Home Cart Sign in  
Chemical Structure| 663921-15-1 Chemical Structure| 663921-15-1

Structure of NH2-PEG4-CH2CH2COOH
CAS No.: 663921-15-1

Chemical Structure| 663921-15-1

*Storage: {[sel_prStorage]}

*Shipping: {[sel_prShipping]}

,{[proInfo.pro_purity]}

4.5 *For Research Use Only !

{[proInfo.pro_purity]}
Cat. No.: {[proInfo.prAm]} Purity: {[proInfo.pro_purity]}

Change View

Size Price VIP Price

US Stock

Global Stock

In Stock
{[ item.pr_size ]} Inquiry {[ getRatePrice(item.pr_usd,item.pr_rate,item.mem_rate,item.pr_is_large_size_no_price, item.vip_usd) ]}

US Stock: ship in 0-1 business day
Global Stock: ship in 5-7 days

  • {[ item.pr_size ]}

In Stock

- +

Please Login or Create an Account to: See VIP prices and availability

US Stock: ship in 0-1 business day
Global Stock: ship in 2 weeks

  • 1-2 Day Shipping
  • High Quality
  • Technical Support
Product Citations

Alternative Products

Product Details of [ 663921-15-1 ]

CAS No. :663921-15-1
Formula : C11H23NO6
M.W : 265.30
SMILES Code : O=C(O)CCOCCOCCOCCOCCN
MDL No. :MFCD11041129
InChI Key :DKUZHSDZSMQOGQ-UHFFFAOYSA-N
Pubchem ID :22731902

Safety of [ 663921-15-1 ]

GHS Pictogram:
Signal Word:Warning
Hazard Statements:H302-H315-H319-H335
Precautionary Statements:P261-P305+P351+P338

Computational Chemistry of [ 663921-15-1 ] Show Less

Physicochemical Properties

Num. heavy atoms 18
Num. arom. heavy atoms 0
Fraction Csp3 0.91
Num. rotatable bonds 14
Num. H-bond acceptors 7.0
Num. H-bond donors 2.0
Molar Refractivity 63.81
TPSA ?

Topological Polar Surface Area: Calculated from
Ertl P. et al. 2000 J. Med. Chem.

100.24 Ų

Lipophilicity

Log Po/w (iLOGP)?

iLOGP: in-house physics-based method implemented from
Daina A et al. 2014 J. Chem. Inf. Model.

2.51
Log Po/w (XLOGP3)?

XLOGP3: Atomistic and knowledge-based method calculated by
XLOGP program, version 3.2.2, courtesy of CCBG, Shanghai Institute of Organic Chemistry

-4.09
Log Po/w (WLOGP)?

WLOGP: Atomistic method implemented from
Wildman SA and Crippen GM. 1999 J. Chem. Inf. Model.

-0.51
Log Po/w (MLOGP)?

MLOGP: Topological method implemented from
Moriguchi I. et al. 1992 Chem. Pharm. Bull.
Moriguchi I. et al. 1994 Chem. Pharm. Bull.
Lipinski PA. et al. 2001 Adv. Drug. Deliv. Rev.

-1.3
Log Po/w (SILICOS-IT)?

SILICOS-IT: Hybrid fragmental/topological method calculated by
FILTER-IT program, version 1.0.2, courtesy of SILICOS-IT, http://www.silicos-it.com

0.71
Consensus Log Po/w?

Consensus Log Po/w: Average of all five predictions

-0.54

Water Solubility

Log S (ESOL):?

ESOL: Topological method implemented from
Delaney JS. 2004 J. Chem. Inf. Model.

2.02
Solubility 27500.0 mg/ml ; 104.0 mol/l
Class?

Solubility class: Log S scale
Insoluble < -10 < Poorly < -6 < Moderately < -4 < Soluble < -2 Very < 0 < Highly

Highly soluble
Log S (Ali)?

Ali: Topological method implemented from
Ali J. et al. 2012 J. Chem. Inf. Model.

2.59
Solubility 103000.0 mg/ml ; 387.0 mol/l
Class?

Solubility class: Log S scale
Insoluble < -10 < Poorly < -6 < Moderately < -4 < Soluble < -2 Very < 0 < Highly

Highly soluble
Log S (SILICOS-IT)?

SILICOS-IT: Fragmental method calculated by
FILTER-IT program, version 1.0.2, courtesy of SILICOS-IT, http://www.silicos-it.com

-1.91
Solubility 3.29 mg/ml ; 0.0124 mol/l
Class?

Solubility class: Log S scale
Insoluble < -10 < Poorly < -6 < Moderately < -4 < Soluble < -2 Very < 0 < Highly

Soluble

Pharmacokinetics

GI absorption?

Gatrointestinal absorption: according to the white of the BOILED-Egg

High
BBB permeant?

BBB permeation: according to the yolk of the BOILED-Egg

No
P-gp substrate?

P-glycoprotein substrate: SVM model built on 1033 molecules (training set)
and tested on 415 molecules (test set)
10-fold CV: ACC=0.72 / AUC=0.77
External: ACC=0.88 / AUC=0.94

No
CYP1A2 inhibitor?

Cytochrome P450 1A2 inhibitor: SVM model built on 9145 molecules (training set)
and tested on 3000 molecules (test set)
10-fold CV: ACC=0.83 / AUC=0.90
External: ACC=0.84 / AUC=0.91

No
CYP2C19 inhibitor?

Cytochrome P450 2C19 inhibitor: SVM model built on 9272 molecules (training set)
and tested on 3000 molecules (test set)
10-fold CV: ACC=0.80 / AUC=0.86
External: ACC=0.80 / AUC=0.87

No
CYP2C9 inhibitor?

Cytochrome P450 2C9 inhibitor: SVM model built on 5940 molecules (training set)
and tested on 2075 molecules (test set)
10-fold CV: ACC=0.78 / AUC=0.85
External: ACC=0.71 / AUC=0.81

No
CYP2D6 inhibitor?

Cytochrome P450 2D6 inhibitor: SVM model built on 3664 molecules (training set)
and tested on 1068 molecules (test set)
10-fold CV: ACC=0.79 / AUC=0.85
External: ACC=0.81 / AUC=0.87

No
CYP3A4 inhibitor?

Cytochrome P450 3A4 inhibitor: SVM model built on 7518 molecules (training set)
and tested on 2579 molecules (test set)
10-fold CV: ACC=0.77 / AUC=0.85
External: ACC=0.78 / AUC=0.86

No
Log Kp (skin permeation)?

Skin permeation: QSPR model implemented from
Potts RO and Guy RH. 1992 Pharm. Res.

-10.82 cm/s

Druglikeness

Lipinski?

Lipinski (Pfizer) filter: implemented from
Lipinski CA. et al. 2001 Adv. Drug Deliv. Rev.
MW ≤ 500
MLOGP ≤ 4.15
N or O ≤ 10
NH or OH ≤ 5

0.0
Ghose?

Ghose filter: implemented from
Ghose AK. et al. 1999 J. Comb. Chem.
160 ≤ MW ≤ 480
-0.4 ≤ WLOGP ≤ 5.6
40 ≤ MR ≤ 130
20 ≤ atoms ≤ 70

None
Veber?

Veber (GSK) filter: implemented from
Veber DF. et al. 2002 J. Med. Chem.
Rotatable bonds ≤ 10
TPSA ≤ 140

1.0
Egan?

Egan (Pharmacia) filter: implemented from
Egan WJ. et al. 2000 J. Med. Chem.
WLOGP ≤ 5.88
TPSA ≤ 131.6

0.0
Muegge?

Muegge (Bayer) filter: implemented from
Muegge I. et al. 2001 J. Med. Chem.
200 ≤ MW ≤ 600
-2 ≤ XLOGP ≤ 5
TPSA ≤ 150
Num. rings ≤ 7
Num. carbon > 4
Num. heteroatoms > 1
Num. rotatable bonds ≤ 15
H-bond acc. ≤ 10
H-bond don. ≤ 5

1.0
Bioavailability Score?

Abbott Bioavailability Score: Probability of F > 10% in rat
implemented from
Martin YC. 2005 J. Med. Chem.

0.55

Medicinal Chemistry

PAINS?

Pan Assay Interference Structures: implemented from
Baell JB. & Holloway GA. 2010 J. Med. Chem.

0.0 alert
Brenk?

Structural Alert: implemented from
Brenk R. et al. 2008 ChemMedChem

0.0 alert: heavy_metal
Leadlikeness?

Leadlikeness: implemented from
Teague SJ. 1999 Angew. Chem. Int. Ed.
250 ≤ MW ≤ 350
XLOGP ≤ 3.5
Num. rotatable bonds ≤ 7

No; 1 violation:MW<1.0
Synthetic accessibility?

Synthetic accessibility score: from 1 (very easy) to 10 (very difficult)
based on 1024 fragmental contributions (FP2) modulated by size and complexity penaties,
trained on 12'782'590 molecules and tested on 40 external molecules (r2 = 0.94)

2.86

Application In Synthesis of [ 663921-15-1 ]

* All experimental methods are cited from the reference, please refer to the original source for details. We do not guarantee the accuracy of the content in the reference.

  • Downstream synthetic route of [ 663921-15-1 ]

[ 663921-15-1 ] Synthesis Path-Downstream   1~3

  • 1
  • [ 39028-27-8 ]
  • [ 663921-15-1 ]
  • [ 18107-18-1 ]
  • [ 1268593-67-4 ]
YieldReaction ConditionsOperation in experiment
2.5. Methyl 3-[2-(2-{2-[2-(2-iodoacetylamino)ethoxy]ethoxy}ethoxy)ethoxy]propanoate 117.4 mg of N-hydroxysuccinimidyl iodoacetate in solution in 3 ml of DCM are added to 100 mg of 3-(2-{2-[2-(2-aminoethoxy)ethoxy]ethoxy}ethoxy)propanoic acid. After 2 h at AT, 330 mul of MeOH are added and the mixture is cooled to 0 C. 360 mul of a 2M solution of trimethylsilyldiazomethane in hexane are added. After 1 h, the mixture is neutralized by addition of 50 mul of acetic acid and then a saturated aqueous NaHCO3 solution is added until pH=8 is obtained. The organic phase is dried over MgSO4 and concentrated under RP, and the residue is purified by flash chromatography on silica (Interchrom Puriflash Silica 15/35U 10G) using a gradient from 0 to 10% of methanol in DCM. 132 mg of methyl 3-[2-(2-{2-[2-(2-iodoacetylamino)ethoxy]ethoxy}ethoxy)ethoxy]propanoate are thus obtained. 1H NMR (400 MHz, d6-DMSO): 2.54 (t, J=6.4 Hz, 2H); 3.20 (q, J=5.8 Hz, 2H); 3.41 (t, J=5.8 Hz, 2H); 3.48 to 3.53 (m, 12H); 3.60 (s, 3H); 3.63 (t, J=6.4 Hz, 2H); 3.65 (s, 2H); 8.27 (broad t, J=5.8 Hz, 1H). LC/MS (A): rt=0.54 min; [M+H]+: m/z 448; [M+HCO2H-H]-: m/z 492.
  • 2
  • [ 6066-82-6 ]
  • [ 663921-15-1 ]
  • [ 1426827-79-3 ]
  • 2,5-dioxopyrrolidin-1-yl 1-[({endo-bicyclo[6.1.0]non-4-yn-9-ylmethoxy}carbonyl)amino]-3,6,9,12-tetraoxapentadecan-15-oate [ No CAS ]
YieldReaction ConditionsOperation in experiment
40% To a solution of amino-dPEG4-acid (1.23 g, 4.23 mmol) in anhydrous DMF (30 mL)were subsequently added 51 (1.02 g, 3.85 mmol) and triethylamine (1.60 mL, 11.53mmol). The reaction mixture was stirred for 3h at rt, after which EDCI.HC1 (0.884 g,4.61 mmol) and NHS (88 mg, 0.77 mmol) were added. The resulting solution was stirredovernight at rt and poured into 100 mL NaHCO3 (sat.) and 150 mL EtOAc. The layerswere separated and the organic phase was washed with sat. NaHCO3 (90 mL) and H20 (75 mL). The organic phase was dried (Na2SO4), filtered and concentrated in vacuo. Gradient flash chromatography (MeCN -* MeCN:H20 30:1) afforded product 60a as colorless oil (800 mg, 1.48 mmol, 40%).
  • 3
  • [ 663921-15-1 ]
  • [ 55750-62-4 ]
  • [ 1263045-16-4 ]
YieldReaction ConditionsOperation in experiment
With sodium hydrogencarbonate; In 1,2-dimethoxyethane; water; at 20℃; for 2h; Compound 3-11 (4.55 g, 18.7 mmol) was dissolved in 10 mL water, NaHCO3 (1.71 g, 20.4 mmol) was added and the mixture was stirred. CE-L-055 (4.55 g, 17 mmol) in 30 mL 1,2-dimethoxyethane was added dropwise slowly. The reaction mixture was stirred for 2 hours at room temperature. 50 mL water was added, the mixture was adjusted to pH 3-4 with 1 M dilute hydrochloric acid, and then extracted with EtOAc for 10 times (50 mL×10). The organic phases were combined, dried over anhydrous sodium sulfate, and concentrated to give the crude product, which was used directly for the next step. LCMS (ESI) m/z 417.2 (M+H)+.
 

Historical Records

Categories