Structure of 611-00-7
*Storage: {[sel_prStorage]}
*Shipping: {[sel_prShipping]}
The BI-3802 was designed by Boehringer Ingelheim and could be obtained free of charge through the Boehringer Ingelheim open innovation portal opnMe.com, associated with its negative control.
4.5
*For Research Use Only !
Change View
Size | Price | VIP Price | US Stock |
Global Stock |
In Stock | ||
{[ item.pr_size ]} |
Inquiry
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]} {[ getRatePrice(item.pr_usd,item.pr_rate,1,item.pr_is_large_size_no_price, item.discount_usd) ]} {[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]} |
Inquiry {[ getRatePrice(item.pr_usd,item.pr_rate,item.mem_rate,item.pr_is_large_size_no_price, item.vip_usd) ]} | Inquiry {[ item.pr_usastock ]} In Stock Inquiry - | {[ item.pr_chinastock ]} {[ item.pr_remark ]} In Stock 1-2 weeks - Inquiry - | Login | - + | Inquiry |
Please Login or Create an Account to: See VIP prices and availability
US Stock: ship in 0-1 business day
Global Stock: ship in 5-7 days
1-2weeks
Inquiry
{[ getRatePrice(item.pr_usd,item.pr_rate,item.mem_rate,item.pr_is_large_size_no_price, item.vip_usd) ]}
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]}
{[ getRatePrice(item.pr_usd,1,item.mem_rate,item.pr_is_large_size_no_price, item.pr_usd) ]}
Inquiry
{[ getRatePrice(item.pr_usd,item.pr_rate,1,item.pr_is_large_size_no_price, item.vip_usd) ]}
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]}
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]}
In Stock
- +
Please Login or Create an Account to: See VIP prices and availability
US Stock: ship in 0-1 business day
Global Stock: ship in 2 weeks
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
CAS No. : | 611-00-7 |
Formula : | C7H4Br2O2 |
M.W : | 279.91 |
SMILES Code : | C1=CC(=CC(=C1C(O)=O)Br)Br |
MDL No. : | MFCD00234253 |
Boiling Point : | No data available |
InChI Key : | NAGGYODWMPFKJQ-UHFFFAOYSA-N |
Pubchem ID : | 11896 |
GHS Pictogram: |
![]() |
Signal Word: | Warning |
Hazard Statements: | H315-H319-H335 |
Precautionary Statements: | P261-P305+P351+P338 |
Num. heavy atoms | 11 |
Num. arom. heavy atoms | 6 |
Fraction Csp3 | 0.0 |
Num. rotatable bonds | 1 |
Num. H-bond acceptors | 2.0 |
Num. H-bond donors | 1.0 |
Molar Refractivity | 48.8 |
TPSA ? Topological Polar Surface Area: Calculated from |
37.3 Ų |
Log Po/w (iLOGP)? iLOGP: in-house physics-based method implemented from |
1.74 |
Log Po/w (XLOGP3)? XLOGP3: Atomistic and knowledge-based method calculated by |
2.86 |
Log Po/w (WLOGP)? WLOGP: Atomistic method implemented from |
2.91 |
Log Po/w (MLOGP)? MLOGP: Topological method implemented from |
3.09 |
Log Po/w (SILICOS-IT)? SILICOS-IT: Hybrid fragmental/topological method calculated by |
2.57 |
Consensus Log Po/w? Consensus Log Po/w: Average of all five predictions |
2.63 |
Log S (ESOL):? ESOL: Topological method implemented from |
-3.71 |
Solubility | 0.054 mg/ml ; 0.000193 mol/l |
Class? Solubility class: Log S scale |
Soluble |
Log S (Ali)? Ali: Topological method implemented from |
-3.3 |
Solubility | 0.14 mg/ml ; 0.000499 mol/l |
Class? Solubility class: Log S scale |
Soluble |
Log S (SILICOS-IT)? SILICOS-IT: Fragmental method calculated by |
-3.47 |
Solubility | 0.0942 mg/ml ; 0.000337 mol/l |
Class? Solubility class: Log S scale |
Soluble |
GI absorption? Gatrointestinal absorption: according to the white of the BOILED-Egg |
High |
BBB permeant? BBB permeation: according to the yolk of the BOILED-Egg |
Yes |
P-gp substrate? P-glycoprotein substrate: SVM model built on 1033 molecules (training set) |
No |
CYP1A2 inhibitor? Cytochrome P450 1A2 inhibitor: SVM model built on 9145 molecules (training set) |
No |
CYP2C19 inhibitor? Cytochrome P450 2C19 inhibitor: SVM model built on 9272 molecules (training set) |
No |
CYP2C9 inhibitor? Cytochrome P450 2C9 inhibitor: SVM model built on 5940 molecules (training set) |
No |
CYP2D6 inhibitor? Cytochrome P450 2D6 inhibitor: SVM model built on 3664 molecules (training set) |
No |
CYP3A4 inhibitor? Cytochrome P450 3A4 inhibitor: SVM model built on 7518 molecules (training set) |
No |
Log Kp (skin permeation)? Skin permeation: QSPR model implemented from |
-5.98 cm/s |
Lipinski? Lipinski (Pfizer) filter: implemented from |
0.0 |
Ghose? Ghose filter: implemented from |
None |
Veber? Veber (GSK) filter: implemented from |
0.0 |
Egan? Egan (Pharmacia) filter: implemented from |
0.0 |
Muegge? Muegge (Bayer) filter: implemented from |
0.0 |
Bioavailability Score? Abbott Bioavailability Score: Probability of F > 10% in rat |
0.56 |
PAINS? Pan Assay Interference Structures: implemented from |
0.0 alert |
Brenk? Structural Alert: implemented from |
0.0 alert: heavy_metal |
Leadlikeness? Leadlikeness: implemented from |
No; 1 violation:MW<0.0 |
Synthetic accessibility? Synthetic accessibility score: from 1 (very easy) to 10 (very difficult) |
1.36 |
* All experimental methods are cited from the reference, please refer to the original source for details. We do not guarantee the accuracy of the content in the reference.
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
100% | With thionyl chloride; at 0℃; for 3.0h;Reflux; | At 0 °C, thionyl chloride (3.57 g, 30 mmol) was added dropwise into a solution of 2,4-dibromobenzoicacid (5.60 g, 20 mmol) in methanol (100 mL) slowly. The ice-salt bath used was removed after that dropping and then the reaction mixture was heated to reflux for 3 hours. TLC and LCMS indicated that starting materials reacted completely. The solvent and excess thionyl chloride were removed by rotary evaporation to give a crude product. Then the crude product was dissolved in dichloromethane (100 mL), washed successively with saturated sodium bicarbonate solution (100 mLx2) and saturated brine (100 mL), dried with anhydrous sodium sulfate and filtered. A yellow solid product (5.92 g, 100percent yield) was obtained by rotary evaporation. The molecular ion peak shown by liquid chromatography-mass spectrometry was: MS (ESI): m/z 292.8/294.7/269.9 [M+H]+. |
96% | With sulfuric acid; at 0℃;Reflux; | General procedure: The corresponding acid (5 mmol) was dissolved in CH3OH (20 mL), and then H2SO4 (8 equiv) was added at 0 °C, the reaction mixture was then refluxed for 24?48 h. After cooling, the solvent was evaporated. To the resulting mixture was slowly added a solution of 10percent Na2CO3 (200 mL), and then the aqueous solution was extracted with ethyl acetate. The organic layers were combined, dried over anhydrous Na2SO4, filtered and concentrated in vacuo. The crude product was purified by column chromatography to obtain compound 3 or compound 4a and 4b. |
213.6 g | With sulfuric acid;Reflux; | Step 1: To a 2 L round-bottom flask, 2,4-dibromobenzoicacid (250 g, 0.90 mol) in MeOH (2 L) and concentrated H2SO4 (18.4 g, 0.19 mol) were added. The mixture was refluxed overnight before cooled to room temperature. The resulting precipitate was then filtered, washed with cold methanol and dried under vacuum. It yielded 213.6 g methyl 2,4-dibromobenzoate as a yellow solid. To a 2 L round-bottom flask was added 2,4-dibromobenzoate (200.7 g, 0.69 mol) in 1 L dry DMF. CuCN (123.8 g, 1.38 mol) and NaI (22.8 g, 0.15 mol) were introduced next. The mixture was stirred overnight at 160 °C under nitrogen atmosphere. After the reaction was complete, it was extracted with ethyl acetate (500 mL × 3),washed with water (500 mL) and purified over silica gel (PE/EtOAc = 5/1) to give 93.5 g methyl 2,4-dicyanobenzoate as a brown solid (yield: 72.8 percent). |