Home Cart Sign in  
Chemical Structure| 60804-74-2 Chemical Structure| 60804-74-2

Structure of 60804-74-2

Chemical Structure| 60804-74-2

*Storage: {[sel_prStorage]}

*Shipping: {[sel_prShipping]}

,{[proInfo.pro_purity]}

4.5 *For Research Use Only !

{[proInfo.pro_purity]}
Cat. No.: {[proInfo.prAm]} Purity: {[proInfo.pro_purity]}

Change View

Size Price VIP Price

US Stock

Global Stock

In Stock
{[ item.pr_size ]} Inquiry {[ getRatePrice(item.pr_usd,item.pr_rate,item.mem_rate,item.pr_is_large_size_no_price, item.vip_usd) ]}

US Stock: ship in 0-1 business day
Global Stock: ship in 5-7 days

  • {[ item.pr_size ]}

In Stock

- +

Please Login or Create an Account to: See VIP prices and availability

US Stock: ship in 0-1 business day
Global Stock: ship in 2 weeks

  • 1-2 Day Shipping
  • High Quality
  • Technical Support
Product Citations

Product Citations

Nguyen, Giang ;

Abstract: Redox flow batteries (RFBs) are a new kind of battery with a great potential to store electricity from renewable energy sources like solar, wind, and tidal on a large scale. This project aims to discover new RFB active compounds that are eco-friendly and inexpensive to produce compared to vanadium, which is the current active compound for most commercial RFBs. This research focuses on iron-based organometallic complexes which are promising inexpensive and long-lived catholytes for aqueous RFBs. The long-term goal of this project is to discover new active compounds for aqueous redox flow battery (RFB). When iron binds with bipyridine (a common ligand for organometallic complexes), it gives stability at near-neutral pH and high discharge potential (high energy density) relative to uncompleted ferrous/ferric ions. However, there are two major challenges with Iron tris(2,2’-bipyridine): low aqueous solubility and dimerization. In this research project, computational chemistry, mainly density functional theory (DFT), will be applied to predict properties of Iron tris(2,2’-bipyridine) for RFBs. Redox potentials are best predicted via computation of Gibbs free energies in a Born-Haber thermodynamic cycle. Due to a variety of functionals and basis sets that serve as inputs for quantum chemistry calculations, different approximations including BP89, PBE, PBE0, B3LYP, BHLYP, B3PW91 and CAM-B3LYP were performed to match redox potential and structural determinations from DFT with actual lab data. As a result, PBE0 functional with LANL2DZ/def2-TZVP basis set gave the most accurate information. Hence, it is applied for deeper study about molecular orbitals, electrostatic potential, and the highest occupied (HOMO) and lowest unoccupied molecular orbital (LUMO) In the pursuit of new RFB compounds, it is critical to understand the relationship of molecular structure, functional group properties, and electronic properties. Redox potential of 13 derivatives of bipyridine were calculated. We were able to plot the effects of substituents on bipyridine ligand on the complex’s redox potentials by applying Hammett equation. In addition, dimerization of Fe(bpy)3SO4, which leads to poor voltage efficiencies in batteries with this catholyte is studied in this research. Due to spin-crossover of the charged (oxidized) Fe (III) complex, it changes structural, vibrational, electronic, and magnetic properties of the molecule. Hence, it forms a dimer during discharge which leads to a drop in voltage efficiency. Preventing dimerization is important in RFB research because it maintain total voltage output of the redox flow battery. Due to spin-crossover phenomenon, broken symmetry was applied to describe the magnetic properties of dimer which is antiferromagnetic. In addition, the dimer undergoes two electron reductions to regenerate two Febpy2+ monomers, thus a modified Born-Haber thermodynamic cycle is applied in discharge reaction to estimate discharge potential of dimer.

Purchased from AmBeed:

Alternative Products

Product Details of [ 60804-74-2 ]

CAS No. :60804-74-2
Formula : C30H24F12N6P2Ru
M.W : 859.55
SMILES Code : F[P-](F)(F)(F)(F)F.F[P-](F)(F)(F)(F)F.C1(C2=NC=CC=C2)=NC=CC=C1.C3(C4=NC=CC=C4)=NC=CC=C3.C5(C6=NC=CC=C6)=NC=CC=C5.[Ru+2]
MDL No. :MFCD11042502
InChI Key :KLDYQWXVZLHTKT-UHFFFAOYSA-N
Pubchem ID :15198703

Safety of [ 60804-74-2 ]

GHS Pictogram:
Signal Word:Warning
Hazard Statements:H315-H319-H335
Precautionary Statements:P261-P305+P351+P338

Computational Chemistry of [ 60804-74-2 ] Show Less

Physicochemical Properties

Num. heavy atoms 51
Num. arom. heavy atoms 36
Fraction Csp3 0.0
Num. rotatable bonds 3
Num. H-bond acceptors 18.0
Num. H-bond donors 0.0
Molar Refractivity 169.54
TPSA ?

Topological Polar Surface Area: Calculated from
Ertl P. et al. 2000 J. Med. Chem.

104.52 Ų

Lipophilicity

Log Po/w (iLOGP)?

iLOGP: in-house physics-based method implemented from
Daina A et al. 2014 J. Chem. Inf. Model.

0.0
Log Po/w (XLOGP3)?

XLOGP3: Atomistic and knowledge-based method calculated by
XLOGP program, version 3.2.2, courtesy of CCBG, Shanghai Institute of Organic Chemistry

10.73
Log Po/w (WLOGP)?

WLOGP: Atomistic method implemented from
Wildman SA and Crippen GM. 1999 J. Chem. Inf. Model.

18.24
Log Po/w (MLOGP)?

MLOGP: Topological method implemented from
Moriguchi I. et al. 1992 Chem. Pharm. Bull.
Moriguchi I. et al. 1994 Chem. Pharm. Bull.
Lipinski PA. et al. 2001 Adv. Drug. Deliv. Rev.

2.41
Log Po/w (SILICOS-IT)?

SILICOS-IT: Hybrid fragmental/topological method calculated by
FILTER-IT program, version 1.0.2, courtesy of SILICOS-IT, http://www.silicos-it.com

2.55
Consensus Log Po/w?

Consensus Log Po/w: Average of all five predictions

6.79

Water Solubility

Log S (ESOL):?

ESOL: Topological method implemented from
Delaney JS. 2004 J. Chem. Inf. Model.

-12.25
Solubility 0.0000000005 mg/ml ; 0.0 mol/l
Class?

Solubility class: Log S scale
Insoluble < -10 < Poorly < -6 < Moderately < -4 < Soluble < -2 Very < 0 < Highly

Insoluble
Log S (Ali)?

Ali: Topological method implemented from
Ali J. et al. 2012 J. Chem. Inf. Model.

-12.88
Solubility 0.0000000001 mg/ml ; 0.0 mol/l
Class?

Solubility class: Log S scale
Insoluble < -10 < Poorly < -6 < Moderately < -4 < Soluble < -2 Very < 0 < Highly

Insoluble
Log S (SILICOS-IT)?

SILICOS-IT: Fragmental method calculated by
FILTER-IT program, version 1.0.2, courtesy of SILICOS-IT, http://www.silicos-it.com

-4.16
Solubility 0.0602 mg/ml ; 0.00007 mol/l
Class?

Solubility class: Log S scale
Insoluble < -10 < Poorly < -6 < Moderately < -4 < Soluble < -2 Very < 0 < Highly

Moderately soluble

Pharmacokinetics

GI absorption?

Gatrointestinal absorption: according to the white of the BOILED-Egg

Low
BBB permeant?

BBB permeation: according to the yolk of the BOILED-Egg

No
P-gp substrate?

P-glycoprotein substrate: SVM model built on 1033 molecules (training set)
and tested on 415 molecules (test set)
10-fold CV: ACC=0.72 / AUC=0.77
External: ACC=0.88 / AUC=0.94

Yes
CYP1A2 inhibitor?

Cytochrome P450 1A2 inhibitor: SVM model built on 9145 molecules (training set)
and tested on 3000 molecules (test set)
10-fold CV: ACC=0.83 / AUC=0.90
External: ACC=0.84 / AUC=0.91

No
CYP2C19 inhibitor?

Cytochrome P450 2C19 inhibitor: SVM model built on 9272 molecules (training set)
and tested on 3000 molecules (test set)
10-fold CV: ACC=0.80 / AUC=0.86
External: ACC=0.80 / AUC=0.87

No
CYP2C9 inhibitor?

Cytochrome P450 2C9 inhibitor: SVM model built on 5940 molecules (training set)
and tested on 2075 molecules (test set)
10-fold CV: ACC=0.78 / AUC=0.85
External: ACC=0.71 / AUC=0.81

No
CYP2D6 inhibitor?

Cytochrome P450 2D6 inhibitor: SVM model built on 3664 molecules (training set)
and tested on 1068 molecules (test set)
10-fold CV: ACC=0.79 / AUC=0.85
External: ACC=0.81 / AUC=0.87

No
CYP3A4 inhibitor?

Cytochrome P450 3A4 inhibitor: SVM model built on 7518 molecules (training set)
and tested on 2579 molecules (test set)
10-fold CV: ACC=0.77 / AUC=0.85
External: ACC=0.78 / AUC=0.86

Yes
Log Kp (skin permeation)?

Skin permeation: QSPR model implemented from
Potts RO and Guy RH. 1992 Pharm. Res.

-3.92 cm/s

Druglikeness

Lipinski?

Lipinski (Pfizer) filter: implemented from
Lipinski CA. et al. 2001 Adv. Drug Deliv. Rev.
MW ≤ 500
MLOGP ≤ 4.15
N or O ≤ 10
NH or OH ≤ 5

1.0
Ghose?

Ghose filter: implemented from
Ghose AK. et al. 1999 J. Comb. Chem.
160 ≤ MW ≤ 480
-0.4 ≤ WLOGP ≤ 5.6
40 ≤ MR ≤ 130
20 ≤ atoms ≤ 70

None
Veber?

Veber (GSK) filter: implemented from
Veber DF. et al. 2002 J. Med. Chem.
Rotatable bonds ≤ 10
TPSA ≤ 140

0.0
Egan?

Egan (Pharmacia) filter: implemented from
Egan WJ. et al. 2000 J. Med. Chem.
WLOGP ≤ 5.88
TPSA ≤ 131.6

1.0
Muegge?

Muegge (Bayer) filter: implemented from
Muegge I. et al. 2001 J. Med. Chem.
200 ≤ MW ≤ 600
-2 ≤ XLOGP ≤ 5
TPSA ≤ 150
Num. rings ≤ 7
Num. carbon > 4
Num. heteroatoms > 1
Num. rotatable bonds ≤ 15
H-bond acc. ≤ 10
H-bond don. ≤ 5

3.0
Bioavailability Score?

Abbott Bioavailability Score: Probability of F > 10% in rat
implemented from
Martin YC. 2005 J. Med. Chem.

0.55

Medicinal Chemistry

PAINS?

Pan Assay Interference Structures: implemented from
Baell JB. & Holloway GA. 2010 J. Med. Chem.

0.0 alert
Brenk?

Structural Alert: implemented from
Brenk R. et al. 2008 ChemMedChem

1.0 alert: heavy_metal
Leadlikeness?

Leadlikeness: implemented from
Teague SJ. 1999 Angew. Chem. Int. Ed.
250 ≤ MW ≤ 350
XLOGP ≤ 3.5
Num. rotatable bonds ≤ 7

No; 1 violation:MW<2.0
Synthetic accessibility?

Synthetic accessibility score: from 1 (very easy) to 10 (very difficult)
based on 1024 fragmental contributions (FP2) modulated by size and complexity penaties,
trained on 12'782'590 molecules and tested on 40 external molecules (r2 = 0.94)

3.81
 

Historical Records

Technical Information

Categories

Related Functional Groups of
[ 60804-74-2 ]

Fluorinated Building Blocks

Chemical Structure| 1223063-81-7

A157157 [1223063-81-7]

6-Fluoro-2,2'-bipyridine

Similarity: 0.70

Chemical Structure| 1000504-35-7

A164545 [1000504-35-7]

2-(4-Fluoropyridin-2-yl)acetonitrile

Similarity: 0.60

Chemical Structure| 391604-55-0

A150452 [391604-55-0]

2-(2,4-Difluorophenyl)pyridine

Similarity: 0.59

Chemical Structure| 939793-18-7

A154001 [939793-18-7]

2-(5-(Trifluoromethyl)pyridin-2-yl)acetonitrile

Similarity: 0.58

Chemical Structure| 1000536-10-6

A350925 [1000536-10-6]

2-(4-(Trifluoromethyl)pyridin-2-yl)acetonitrile

Similarity: 0.58

Related Parent Nucleus of
[ 60804-74-2 ]

Pyridines

Chemical Structure| 56100-20-0

A240994 [56100-20-0]

5-Methyl-2,2'-bipyridine

Similarity: 0.80

Chemical Structure| 74173-48-1

A110761 [74173-48-1]

4-Methyl-4'-vinyl-2,2'-bipyridine

Similarity: 0.79

Chemical Structure| 1008-89-5

A149115 [1008-89-5]

2-Phenylpyridine

Similarity: 0.73

Chemical Structure| 2294-76-0

A133683 [2294-76-0]

2-Pentylpyridine

Similarity: 0.72

Chemical Structure| 622-39-9

A154912 [622-39-9]

2-Propylpyridine

Similarity: 0.72