Home Cart Sign in  
Chemical Structure| 59674-85-0 Chemical Structure| 59674-85-0
Chemical Structure| 59674-85-0

7-Aminoquinazoline-2,4(1H,3H)-dione

CAS No.: 59674-85-0

4.5 *For Research Use Only !

Cat. No.: A532977 Purity: 95%

Change View

Size Price

USA Stock *0-1 Day

Global Stock *5-7 Days

In Stock
100mg łË˶ÊÊ Inquiry Inquiry
250mg ł§Ê¶ÊÊ Inquiry Inquiry
1g łÿÿ¶ÊÊ Inquiry Inquiry
5g łÇîó¶ÊÊ Inquiry Inquiry
25g łďďó¶ÊÊ Inquiry Inquiry

  • 100mg

    łË˶ÊÊ

  • 250mg

    ł§Ê¶ÊÊ

  • 1g

    łÿÿ¶ÊÊ

  • 5g

    łÇîó¶ÊÊ

  • 25g

    łďďó¶ÊÊ

In Stock

- +

  • 1-2 Day Shipping
  • High Quality
  • Technical Support Online Technical Q&A
Product Citations

Alternative Products

Product Details of [ 59674-85-0 ]

CAS No. :59674-85-0
Formula : C8H7N3O2
M.W : 177.16
SMILES Code : O=C(N1)NC2=C(C=CC(N)=C2)C1=O
MDL No. :MFCD13191696
Boiling Point : No data available
InChI Key :YJVIGCMCVAFCCB-UHFFFAOYSA-N
Pubchem ID :401837

Safety of [ 59674-85-0 ]

GHS Pictogram:
Signal Word:Warning
Hazard Statements:H302-H315-H319-H335
Precautionary Statements:P261-P305+P351+P338

Calculated chemistry of [ 59674-85-0 ] Show Less

Physicochemical Properties

Num. heavy atoms 13
Num. arom. heavy atoms 10
Fraction Csp3 0.0
Num. rotatable bonds 0
Num. H-bond acceptors 2.0
Num. H-bond donors 3.0
Molar Refractivity 49.59
TPSA ?

Topological Polar Surface Area: Calculated from
Ertl P. et al. 2000 J. Med. Chem.

91.74 Ų

Lipophilicity

Log Po/w (iLOGP)?

iLOGP: in-house physics-based method implemented from
Daina A et al. 2014 J. Chem. Inf. Model.

0.66
Log Po/w (XLOGP3)?

XLOGP3: Atomistic and knowledge-based method calculated by
XLOGP program, version 3.2.2, courtesy of CCBG, Shanghai Institute of Organic Chemistry

0.09
Log Po/w (WLOGP)?

WLOGP: Atomistic method implemented from
Wildman SA and Crippen GM. 1999 J. Chem. Inf. Model.

-0.19
Log Po/w (MLOGP)?

MLOGP: Topological method implemented from
Moriguchi I. et al. 1992 Chem. Pharm. Bull.
Moriguchi I. et al. 1994 Chem. Pharm. Bull.
Lipinski PA. et al. 2001 Adv. Drug. Deliv. Rev.

0.04
Log Po/w (SILICOS-IT)?

SILICOS-IT: Hybrid fragmental/topological method calculated by
FILTER-IT program, version 1.0.2, courtesy of SILICOS-IT, http://www.silicos-it.com

1.48
Consensus Log Po/w?

Consensus Log Po/w: Average of all five predictions

0.41

Water Solubility

Log S (ESOL):?

ESOL: Topological method implemented from
Delaney JS. 2004 J. Chem. Inf. Model.

-1.56
Solubility 4.83 mg/ml ; 0.0273 mol/l
Class?

Solubility class: Log S scale
Insoluble < -10 < Poorly < -6 < Moderately < -4 < Soluble < -2 Very < 0 < Highly

Very soluble
Log S (Ali)?

Ali: Topological method implemented from
Ali J. et al. 2012 J. Chem. Inf. Model.

-1.57
Solubility 4.76 mg/ml ; 0.0268 mol/l
Class?

Solubility class: Log S scale
Insoluble < -10 < Poorly < -6 < Moderately < -4 < Soluble < -2 Very < 0 < Highly

Very soluble
Log S (SILICOS-IT)?

SILICOS-IT: Fragmental method calculated by
FILTER-IT program, version 1.0.2, courtesy of SILICOS-IT, http://www.silicos-it.com

-2.78
Solubility 0.293 mg/ml ; 0.00166 mol/l
Class?

Solubility class: Log S scale
Insoluble < -10 < Poorly < -6 < Moderately < -4 < Soluble < -2 Very < 0 < Highly

Soluble

Pharmacokinetics

GI absorption?

Gatrointestinal absorption: according to the white of the BOILED-Egg

High
BBB permeant?

BBB permeation: according to the yolk of the BOILED-Egg

No
P-gp substrate?

P-glycoprotein substrate: SVM model built on 1033 molecules (training set)
and tested on 415 molecules (test set)
10-fold CV: ACC=0.72 / AUC=0.77
External: ACC=0.88 / AUC=0.94

No
CYP1A2 inhibitor?

Cytochrome P450 1A2 inhibitor: SVM model built on 9145 molecules (training set)
and tested on 3000 molecules (test set)
10-fold CV: ACC=0.83 / AUC=0.90
External: ACC=0.84 / AUC=0.91

Yes
CYP2C19 inhibitor?

Cytochrome P450 2C19 inhibitor: SVM model built on 9272 molecules (training set)
and tested on 3000 molecules (test set)
10-fold CV: ACC=0.80 / AUC=0.86
External: ACC=0.80 / AUC=0.87

No
CYP2C9 inhibitor?

Cytochrome P450 2C9 inhibitor: SVM model built on 5940 molecules (training set)
and tested on 2075 molecules (test set)
10-fold CV: ACC=0.78 / AUC=0.85
External: ACC=0.71 / AUC=0.81

No
CYP2D6 inhibitor?

Cytochrome P450 2D6 inhibitor: SVM model built on 3664 molecules (training set)
and tested on 1068 molecules (test set)
10-fold CV: ACC=0.79 / AUC=0.85
External: ACC=0.81 / AUC=0.87

No
CYP3A4 inhibitor?

Cytochrome P450 3A4 inhibitor: SVM model built on 7518 molecules (training set)
and tested on 2579 molecules (test set)
10-fold CV: ACC=0.77 / AUC=0.85
External: ACC=0.78 / AUC=0.86

No
Log Kp (skin permeation)?

Skin permeation: QSPR model implemented from
Potts RO and Guy RH. 1992 Pharm. Res.

-7.32 cm/s

Druglikeness

Lipinski?

Lipinski (Pfizer) filter: implemented from
Lipinski CA. et al. 2001 Adv. Drug Deliv. Rev.
MW ≤ 500
MLOGP ≤ 4.15
N or O ≤ 10
NH or OH ≤ 5

0.0
Ghose?

Ghose filter: implemented from
Ghose AK. et al. 1999 J. Comb. Chem.
160 ≤ MW ≤ 480
-0.4 ≤ WLOGP ≤ 5.6
40 ≤ MR ≤ 130
20 ≤ atoms ≤ 70

None
Veber?

Veber (GSK) filter: implemented from
Veber DF. et al. 2002 J. Med. Chem.
Rotatable bonds ≤ 10
TPSA ≤ 140

0.0
Egan?

Egan (Pharmacia) filter: implemented from
Egan WJ. et al. 2000 J. Med. Chem.
WLOGP ≤ 5.88
TPSA ≤ 131.6

0.0
Muegge?

Muegge (Bayer) filter: implemented from
Muegge I. et al. 2001 J. Med. Chem.
200 ≤ MW ≤ 600
-2 ≤ XLOGP ≤ 5
TPSA ≤ 150
Num. rings ≤ 7
Num. carbon > 4
Num. heteroatoms > 1
Num. rotatable bonds ≤ 15
H-bond acc. ≤ 10
H-bond don. ≤ 5

1.0
Bioavailability Score?

Abbott Bioavailability Score: Probability of F > 10% in rat
implemented from
Martin YC. 2005 J. Med. Chem.

0.55

Medicinal Chemistry

PAINS?

Pan Assay Interference Structures: implemented from
Baell JB. & Holloway GA. 2010 J. Med. Chem.

0.0 alert
Brenk?

Structural Alert: implemented from
Brenk R. et al. 2008 ChemMedChem

1.0 alert: heavy_metal
Leadlikeness?

Leadlikeness: implemented from
Teague SJ. 1999 Angew. Chem. Int. Ed.
250 ≤ MW ≤ 350
XLOGP ≤ 3.5
Num. rotatable bonds ≤ 7

No; 1 violation:MW<1.0
Synthetic accessibility?

Synthetic accessibility score: from 1 (very easy) to 10 (very difficult)
based on 1024 fragmental contributions (FP2) modulated by size and complexity penaties,
trained on 12'782'590 molecules and tested on 40 external molecules (r2 = 0.94)

1.76

Application In Synthesis [ 59674-85-0 ]

* All experimental methods are cited from the reference, please refer to the original source for details. We do not guarantee the accuracy of the content in the reference.

  • Downstream synthetic route of [ 59674-85-0 ]

[ 59674-85-0 ] Synthesis Path-Downstream   1~8

  • 4
  • [ 59674-85-0 ]
  • [ 4330-21-6 ]
  • C29H27N3O7 [ No CAS ]
  • 5
  • [ 611-03-0 ]
  • [ 57-13-6 ]
  • [ 59674-85-0 ]
YieldReaction ConditionsOperation in experiment
at 150℃; for 20.0h; General procedure: Anthranilic acids (3, 29.1 mmol, 1 eq) and urea (582.8 mmol, 20 eq) were poured into 100 mL round bottom flask. Then, the reaction mixture was heated at 150 oC for 20 h. The reaction was monitored by TLC. After the reaction was completed, it cooled down to room temperature. Then, 60 mL water was poured and the reaction mixture was heated at 100 oC for 1 h. The reaction mixture was cooled in ice bath and the white solid was precipitated. The white solid was filtered and washed with water and hexane. The residue (4, 28.3 mmol, 97%) was dried in vacuo and used next step without further purification. The chemical yield of first reaction was usually around 90%. The compound 4 (28.3 mmol, 1 eq) was dissolved in triethylamine (56.6 mmol, 2 eq). Then, POCl3 (254.5 mmol, 9 eq) was slowly added to the reaction mixture. The reaction mixture was heated at 115 oC for 17 h. The reaction was monitored by TLC. After the completion of the reaction, the reaction solvents were evaporated with toluene several times. The residue was diluted with water and extracted with ethyl acetate several times. The organic layer was dried over sodium sulfate, filtered, and concentrated in vacuo. The crude 5 (25.2 mmol) was used in next step without further purification. The crude 5 (25.2 mmol) was dissolved in 2 N NaOH solution (75.6 mmol, 38 mL, 3 eq) and was stirred at room temperature for 20 h. The reaction mixture was cooled to room temperature. Acetic acid (75.6 mmol, 3 eq) was added to the reaction mixture. The aqueous phase was extracted with ethyl acetate and the combined organic layer was dried over sodium sulfate, filtered, and concentrated in vacuo to afford crude 6 (19.4 mmol), which was used in next step without further purification. To a 25 mL round bottom flask were added crude 6 (0.93 mmol), anilines (7, 2.8 mmol, 3 eq), and DMF (3.1 mL). The reaction mixture was stirred at 85 oC for 16 h. The reaction mixture was cooled to room temperature and precipitates were formed. The precipitates were washed with water and hexane thoroughly. The residue (8, 0.88 mmol, 94%) was dried in vacuo. If the precipitates were not formed, the reaction mixture was purified by prep HPLC (Shim-pack PREP-ODS, H2O:CH3CN:CH3OH=40:30:30 to H2O:CH3CN:CH3OH=1:49.5:49.5, flow rate=12 mL/min, 40 oC, λ=254 nm, retention time : 30 min). The chemical yields for each final products are described below.
  • 6
  • [ 59674-85-0 ]
  • C8H5Cl2N3 [ No CAS ]
YieldReaction ConditionsOperation in experiment
With triethylamine; trichlorophosphate; at 115℃; for 17.0h; General procedure: Anthranilic acids (3, 29.1 mmol, 1 eq) and urea (582.8 mmol, 20 eq) were poured into 100 mL round bottom flask. Then, the reaction mixture was heated at 150 oC for 20 h. The reaction was monitored by TLC. After the reaction was completed, it cooled down to room temperature. Then, 60 mL water was poured and the reaction mixture was heated at 100 oC for 1 h. The reaction mixture was cooled in ice bath and the white solid was precipitated. The white solid was filtered and washed with water and hexane. The residue (4, 28.3 mmol, 97%) was dried in vacuo and used next step without further purification. The chemical yield of first reaction was usually around 90%. The compound 4 (28.3 mmol, 1 eq) was dissolved in triethylamine (56.6 mmol, 2 eq). Then, POCl3 (254.5 mmol, 9 eq) was slowly added to the reaction mixture. The reaction mixture was heated at 115 oC for 17 h. The reaction was monitored by TLC. After the completion of the reaction, the reaction solvents were evaporated with toluene several times. The residue was diluted with water and extracted with ethyl acetate several times. The organic layer was dried over sodium sulfate, filtered, and concentrated in vacuo. The crude 5 (25.2 mmol) was used in next step without further purification. The crude 5 (25.2 mmol) was dissolved in 2 N NaOH solution (75.6 mmol, 38 mL, 3 eq) and was stirred at room temperature for 20 h. The reaction mixture was cooled to room temperature. Acetic acid (75.6 mmol, 3 eq) was added to the reaction mixture. The aqueous phase was extracted with ethyl acetate and the combined organic layer was dried over sodium sulfate, filtered, and concentrated in vacuo to afford crude 6 (19.4 mmol), which was used in next step without further purification. To a 25 mL round bottom flask were added crude 6 (0.93 mmol), anilines (7, 2.8 mmol, 3 eq), and DMF (3.1 mL). The reaction mixture was stirred at 85 oC for 16 h. The reaction mixture was cooled to room temperature and precipitates were formed. The precipitates were washed with water and hexane thoroughly. The residue (8, 0.88 mmol, 94%) was dried in vacuo. If the precipitates were not formed, the reaction mixture was purified by prep HPLC (Shim-pack PREP-ODS, H2O:CH3CN:CH3OH=40:30:30 to H2O:CH3CN:CH3OH=1:49.5:49.5, flow rate=12 mL/min, 40 oC, λ=254 nm, retention time : 30 min). The chemical yields for each final products are described below.
  • 7
  • [ 59674-85-0 ]
  • C8H6ClN3O [ No CAS ]
  • 8
  • [ 59674-85-0 ]
  • 7-amino-2-((3,5-dichlorophenyl)amino)quinazolin-4(3H)-one [ No CAS ]
 

Historical Records

Technical Information

Categories

Related Functional Groups of
[ 59674-85-0 ]

Amides

Chemical Structure| 86-96-4

A149578 [86-96-4]

Quinazoline-2,4(1H,3H)-dione

Similarity: 1.00

Chemical Structure| 67449-23-4

A177886 [67449-23-4]

8-Methylquinazoline-2,4(1H,3H)-dione

Similarity: 0.98

Chemical Structure| 604-50-2

A157951 [604-50-2]

1-Methylquinazoline-2,4(1H,3H)-dione

Similarity: 0.94

Chemical Structure| 135481-57-1

A102008 [135481-57-1]

6-Benzyl-5,6,7,8-tetrahydropyrido[4,3-d]pyrimidine-2,4(1H,3H)-dione

Similarity: 0.88

Chemical Structure| 62484-16-6

A162185 [62484-16-6]

6-Methylquinazoline-2,4(1H,3H)-dione

Similarity: 0.88

Amines

Chemical Structure| 4943-85-5

A191613 [4943-85-5]

2-Amino-N-(o-tolyl)benzamide

Similarity: 0.79

Chemical Structure| 74441-06-8

A715792 [74441-06-8]

4-Amino-N-(4-carbamoylphenyl)benzamide

Similarity: 0.76

Chemical Structure| 3676-85-5

A200318 [3676-85-5]

5-Aminoisoindoline-1,3-dione

Similarity: 0.74

Chemical Structure| 2307-00-8

A179899 [2307-00-8]

5-Amino-2-methylisoindoline-1,3-dione

Similarity: 0.73

Chemical Structure| 675109-45-2

A197166 [675109-45-2]

6-Amino-2,3-dihydro-1H-isoindol-1-one

Similarity: 0.73

Related Parent Nucleus of
[ 59674-85-0 ]

Quinazolines

Chemical Structure| 86-96-4

A149578 [86-96-4]

Quinazoline-2,4(1H,3H)-dione

Similarity: 1.00

Chemical Structure| 67449-23-4

A177886 [67449-23-4]

8-Methylquinazoline-2,4(1H,3H)-dione

Similarity: 0.98

Chemical Structure| 604-50-2

A157951 [604-50-2]

1-Methylquinazoline-2,4(1H,3H)-dione

Similarity: 0.94

Chemical Structure| 62484-16-6

A162185 [62484-16-6]

6-Methylquinazoline-2,4(1H,3H)-dione

Similarity: 0.88

Chemical Structure| 5081-87-8

A104646 [5081-87-8]

3-(2-Chloroethyl)quinazoline-2,4(1H,3H)-dione

Similarity: 0.87