Structure of 5922-60-1
*Storage: {[sel_prStorage]}
*Shipping: {[sel_prShipping]}
The BI-3802 was designed by Boehringer Ingelheim and could be obtained free of charge through the Boehringer Ingelheim open innovation portal opnMe.com, associated with its negative control.
4.5
*For Research Use Only !
Change View
Size | Price | VIP Price | US Stock |
Global Stock |
In Stock | ||
{[ item.pr_size ]} |
Inquiry
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]} {[ getRatePrice(item.pr_usd,item.pr_rate,1,item.pr_is_large_size_no_price, item.discount_usd) ]} {[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]} |
Inquiry {[ getRatePrice(item.pr_usd,item.pr_rate,item.mem_rate,item.pr_is_large_size_no_price, item.vip_usd) ]} | Inquiry {[ item.pr_usastock ]} In Stock Inquiry - | {[ item.pr_chinastock ]} {[ item.pr_remark ]} In Stock 1-2 weeks - Inquiry - | Login | - + | Inquiry |
Please Login or Create an Account to: See VIP prices and availability
US Stock: ship in 0-1 business day
Global Stock: ship in 5-7 days
1-2weeks
Inquiry
{[ getRatePrice(item.pr_usd,item.pr_rate,item.mem_rate,item.pr_is_large_size_no_price, item.vip_usd) ]}
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]}
{[ getRatePrice(item.pr_usd,1,item.mem_rate,item.pr_is_large_size_no_price, item.pr_usd) ]}
Inquiry
{[ getRatePrice(item.pr_usd,item.pr_rate,1,item.pr_is_large_size_no_price, item.vip_usd) ]}
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]}
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]}
In Stock
- +
Please Login or Create an Account to: See VIP prices and availability
US Stock: ship in 0-1 business day
Global Stock: ship in 2 weeks
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
CAS No. : | 5922-60-1 |
Formula : | C7H5ClN2 |
M.W : | 152.58 |
SMILES Code : | C1=C(Cl)C=CC(=C1C#N)N |
MDL No. : | MFCD00017106 |
InChI Key : | QYRDWARBHMCOAG-UHFFFAOYSA-N |
Pubchem ID : | 80019 |
GHS Pictogram: |
![]() |
Signal Word: | Warning |
Hazard Statements: | H302-H312-H315-H319-H335 |
Precautionary Statements: | P261-P280-P305+P351+P338 |
Num. heavy atoms | 10 |
Num. arom. heavy atoms | 6 |
Fraction Csp3 | 0.0 |
Num. rotatable bonds | 0 |
Num. H-bond acceptors | 1.0 |
Num. H-bond donors | 1.0 |
Molar Refractivity | 40.57 |
TPSA ? Topological Polar Surface Area: Calculated from |
49.81 Ų |
Log Po/w (iLOGP)? iLOGP: in-house physics-based method implemented from |
1.48 |
Log Po/w (XLOGP3)? XLOGP3: Atomistic and knowledge-based method calculated by |
2.55 |
Log Po/w (WLOGP)? WLOGP: Atomistic method implemented from |
1.8 |
Log Po/w (MLOGP)? MLOGP: Topological method implemented from |
1.39 |
Log Po/w (SILICOS-IT)? SILICOS-IT: Hybrid fragmental/topological method calculated by |
1.72 |
Consensus Log Po/w? Consensus Log Po/w: Average of all five predictions |
1.79 |
Log S (ESOL):? ESOL: Topological method implemented from |
-2.84 |
Solubility | 0.222 mg/ml ; 0.00146 mol/l |
Class? Solubility class: Log S scale |
Soluble |
Log S (Ali)? Ali: Topological method implemented from |
-3.24 |
Solubility | 0.0871 mg/ml ; 0.000571 mol/l |
Class? Solubility class: Log S scale |
Soluble |
Log S (SILICOS-IT)? SILICOS-IT: Fragmental method calculated by |
-2.72 |
Solubility | 0.289 mg/ml ; 0.00189 mol/l |
Class? Solubility class: Log S scale |
Soluble |
GI absorption? Gatrointestinal absorption: according to the white of the BOILED-Egg |
High |
BBB permeant? BBB permeation: according to the yolk of the BOILED-Egg |
Yes |
P-gp substrate? P-glycoprotein substrate: SVM model built on 1033 molecules (training set) |
No |
CYP1A2 inhibitor? Cytochrome P450 1A2 inhibitor: SVM model built on 9145 molecules (training set) |
Yes |
CYP2C19 inhibitor? Cytochrome P450 2C19 inhibitor: SVM model built on 9272 molecules (training set) |
No |
CYP2C9 inhibitor? Cytochrome P450 2C9 inhibitor: SVM model built on 5940 molecules (training set) |
No |
CYP2D6 inhibitor? Cytochrome P450 2D6 inhibitor: SVM model built on 3664 molecules (training set) |
No |
CYP3A4 inhibitor? Cytochrome P450 3A4 inhibitor: SVM model built on 7518 molecules (training set) |
No |
Log Kp (skin permeation)? Skin permeation: QSPR model implemented from |
-5.42 cm/s |
Lipinski? Lipinski (Pfizer) filter: implemented from |
0.0 |
Ghose? Ghose filter: implemented from |
None |
Veber? Veber (GSK) filter: implemented from |
0.0 |
Egan? Egan (Pharmacia) filter: implemented from |
0.0 |
Muegge? Muegge (Bayer) filter: implemented from |
1.0 |
Bioavailability Score? Abbott Bioavailability Score: Probability of F > 10% in rat |
0.55 |
PAINS? Pan Assay Interference Structures: implemented from |
0.0 alert |
Brenk? Structural Alert: implemented from |
1.0 alert: heavy_metal |
Leadlikeness? Leadlikeness: implemented from |
No; 1 violation:MW<1.0 |
Synthetic accessibility? Synthetic accessibility score: from 1 (very easy) to 10 (very difficult) |
1.36 |
* All experimental methods are cited from the reference, please refer to the original source for details. We do not guarantee the accuracy of the content in the reference.
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
99% | With tetrabutyl ammonium fluoride In dimethyl sulfoxide at 110℃; for 24 h; Autoclave | General procedure: Table 5: To a DMSO‑d6 solution (1 mL) of 2-aminobenzonitrile 4a (1 mmol) in a stainless steel autoclave was added a catalyst (0.01 mmol) under an argon atmosphere. The autoclave was sealed, heated at 110°C and then pressurized with CO2 of 2 MPa. The cyclization reaction of 4a proceeded by the magnetic stirring of the resulting mixture at 110°C for 3 h. After the reaction the autoclave was cooled in an ice bath and depressurized. The chemical yield of quinazoline-2,4(1H,3H)-dione 5a was determined by integrating 1HNMR with reference to an internal standard (3,5-dimethoxybenzylalcohol), which was added to the reaction mixture. Table 6: DMSO solution (6 mL) of 4 (6 mmol) was treated for the carboxylative cyclization of 4 with CO2 according to the procedure of Table 5. After the reaction, the autoclave was cooled in an ice bath and depressurized, and the reaction mixture was added to water (60 mL). The precipitation was collected by filtration, washed with water and diethyl ether, and then dried in vacuo at 35°C for 15 h to give the pure product 5. |
94% | With fibrous nanosilica functionalized with sodium tripolyphosphate and 3-aminopropyltriethoxysilane In neat (no solvent) at 70℃; for 0.833333 h; Autoclave; Green chemistry | General procedure: 2-aminobenzonitrile (1 mmol) and KCC-1/STPP NPs (0.7 mg) were mixed together. The autoclave was closed, purged twice with CO2 gas, pressurized to 1.5 MPa of CO2, and heated at 70°C for 50 min. Then, the reactor was cooled to ambient temperature and the resulting mixture was transferred to a 50 mL round-bottom flask. During completion, the reaction progress was monitored by TLC. Following its completion, EtOH was added to the reaction mixture and the catalyst was separated by filtration. Afterwards, the solvent was removed from the solution under reduced pressure and the resulting product was purified by recrystallization using n-hexane/ethyl acetate. The products are known and their sample characterization data is presented in the Supplemental Materials. |
93% | Stage #1: With 2,2'-iminobis[ethanol] In water for 0.0333333 h; Autoclave Stage #2: at 100℃; for 12 h; Autoclave |
Weigh 0.763 g (5 mmol) of 2-amino-5-chlorobenzonitrile was placed in a polytetrafluoroethylene liner of a stainless steel reactor, and3 mL of a diethanolamine aqueous solution having a concentration of 1.33 mol / L was added and stirred for 2 minutes , The carbon dioxide was heated and the temperature was raisedto 100 ° C, and the carbon dioxide pressure was adjusted to 1 MPa for the carboxylation reaction under stable conditions for 12 hours.Antiupon end, the reaction system was cooled to room temperature slowly released unreacted carbon dioxide, was added 10mL of deionized water and stirreddispersion product, resulting precipitate was filtered and washed with a small amount of distilled water, and then 15mL / wash three times with methyl tert-butyl ether Andthe product was dried at a temperature of 100 ° C to give 6-chloroquinazoline-2,4 (1H, 3H) -dione having a yield of 93percent. |
92% | at 70℃; for 1 h; Autoclave | General procedure: 2-aminobenzonitrile (1mmol), and KCC-1/IL NPs (0.0007g) were added. The autoclave was closed, purged twice with CO2 gas, pressurized with 0.8MPa of CO2 and then heated at 70°C for 60min. Then the reactor was cooled to ambient temperature, and the resulting mixture was transferred to a 50mL round bottom flask. Upon completion, the progress of the reaction was monitored by TLC when the reaction was completed, EtOH was added to the reaction mixture and the KCC-1/IL NPs were separated by distillation under vacuum. Then the solvent was removed from solution under reduced pressure and the resulting product purified by recrystallization using n-hexane/ethyl acetate. |
91% | With {Eu[N(SiMe3)2](μ-O:κ2-C6H5C(O)NC6H3(iPr)2)(THF)}2; 1,8-diazabicyclo[5.4.0]undec-7-ene In dimethyl sulfoxide at 100℃; for 24 h; | In anhydrous, anaerobic, argon protection,0.0999 g (7.5 x 10-5 mol) of {L2Eu [N (SiMe3) 2] THF} 2 was added to the reaction flask,An additional 11.2 μL (7.5 × 10 -5 mol) DBU was added, under the protection of carbon dioxide bag,Add 2 mL of dimethyl sulfoxide, add 0.2949 g (1.5 × 10 -3 mol) of 2-amino-5-chlorobenzonitrile,The reaction was stirred in a constant temperature bath at 100 ° C. After 24h, add 5mL 2mol / L hydrochloric acid to quench the reaction,Suction filtration, successively washed with 3 × 5mL hydrochloric acid, toluene and ether solids, the residual solvent was stripped, dried solids,The product was obtained in 91percent yield. |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
95% | Stage #1: at 180℃; for 6 h; |
Example 4 - synthesis of 4-amino-6-chloro-quinazolineA solution of 2-amino-5-chlorobenzonitrile (1.07 g, 7.0 mmol) in formamide (20 ml) was heated at 180 0C for 6 hours. After cooling to room temperature, water (30 ml) was added to the reaction mixture. The precipitate was collected by filtration, washed with water and dried over P2O5, yielding the title compound as a grey solid (1.2 g, yield: 95 percent) which was characterized by its mass spectrum as follows: MS (m/z): 180 ([M+H]+, 100). |
95% | at 180℃; for 6 h; | Example 4 - synthesis of 4-amino-6-chloro-quinazoline; A solution of 2-amino-5-chlorobenzonitrile (1.07 g, 7.0 mmol) in formamide (20 ml) was heated at 180 0C for 6 hours. After cooling to room temperature, water (30 ml) was added to the reaction mixture. The precipitate was collected by filtration, washed with water and dried over P2O5, yielding the title compound as a grey solid (1.2 g, yield: 95 percent) which was characterized by its mass spectrum as follows: MS (m/z): 180 ([M+H]+, 100). |
A816819 [36764-94-0]
2-Amino-3,5-dichlorobenzonitrile
Similarity: 0.92
A816819 [36764-94-0]
2-Amino-3,5-dichlorobenzonitrile
Similarity: 0.92
A816819 [36764-94-0]
2-Amino-3,5-dichlorobenzonitrile
Similarity: 0.92
A816819 [36764-94-0]
2-Amino-3,5-dichlorobenzonitrile
Similarity: 0.92