Home Cart Sign in  
Chemical Structure| 56826-69-8 Chemical Structure| 56826-69-8

Structure of 6,7-Dihydro-5H-quinoline-8-one
CAS No.: 56826-69-8

Chemical Structure| 56826-69-8

*Storage: {[sel_prStorage]}

*Shipping: {[sel_prShipping]}

,{[proInfo.pro_purity]}

4.5 *For Research Use Only !

{[proInfo.pro_purity]}
Cat. No.: {[proInfo.prAm]} Purity: {[proInfo.pro_purity]}

Change View

Size Price VIP Price

US Stock

Global Stock

In Stock
{[ item.pr_size ]} Inquiry {[ getRatePrice(item.pr_usd,item.pr_rate,item.mem_rate,item.pr_is_large_size_no_price, item.vip_usd) ]}

US Stock: ship in 0-1 business day
Global Stock: ship in 5-7 days

  • {[ item.pr_size ]}

In Stock

- +

Please Login or Create an Account to: See VIP prices and availability

US Stock: ship in 0-1 business day
Global Stock: ship in 2 weeks

  • 1-2 Day Shipping
  • High Quality
  • Technical Support
Product Citations

Product Citations

Xiaobin Zhang ; Sara L. Adelman ; Brian T. Arko ; Channa R. De Silva ; Jing Su ; Stosh A. Kozimor , et al.

Abstract: Advancing the field of chemical separations is important for nearly every area of science and technology. Some of the most challenging separations are associated with the americium ion Am(III) for its extraction in the nuclear fuel cycle, 241Am production for industrial usage, and environmental cleanup efforts. Herein, we study a series of extractants, using first-principle calculations, to identify the electronic properties that preferentially influence Am(III) binding in separations. As the most used extractant family and because it affords a high degree of functionalization, the polypyridyl family of extractants is chosen to study the effects of the planarity of the structure, preorganization of coordinating atoms, and substitution of various functional groups. The actinyl ions are used as a structurally simplified surrogate model to quickly screen the most promising candidates that can separate these metal ions. The down-selected extractants are then tested for the Am(III)/Eu(III) system. Our results show that π interactions, especially those between the central terpyridine ring and Am(III), play a crucial role in separation. Adding an electron-donating group onto the terpyridine backbone increases the binding energies to Am(III) and stabilizes Am−terpyridine coordination. Increasing the planarity of the extractant increases the binding strength as well, although this effect is found to be rather weak. Preorganizing the coordinating atoms of an extractant to their binding configuration as in the bound metal complex speeds up the binding process and significantly improves the kinetics of the separation process. This conclusion is validated by the synthesized 1,2-dihydrodipyrido[4,3-b;5,6-b]acridine (13) extractant, a preorganized derivative of the terpyridine extractant, which we experimentally showed was four times more effective than terpyridine at separating Am3+ from Eu3+ (SFAm/Eu ∼ 23 ± 1).

Purchased from AmBeed: ;

Alternative Products

Product Details of [ 56826-69-8 ]

CAS No. :56826-69-8
Formula : C9H9NO
M.W : 147.17
SMILES Code : N1=CC=CC2=C1C(CCC2)=O
MDL No. :MFCD03839916
InChI Key :JIAKIQWNYAZUJD-UHFFFAOYSA-N
Pubchem ID :11744777

Safety of [ 56826-69-8 ]

GHS Pictogram:
Signal Word:Warning
Hazard Statements:H315-H319-H335
Precautionary Statements:P261-P305+P351+P338

Computational Chemistry of [ 56826-69-8 ] Show Less

Physicochemical Properties

Num. heavy atoms 11
Num. arom. heavy atoms 6
Fraction Csp3 0.33
Num. rotatable bonds 0
Num. H-bond acceptors 2.0
Num. H-bond donors 0.0
Molar Refractivity 42.09
TPSA ?

Topological Polar Surface Area: Calculated from
Ertl P. et al. 2000 J. Med. Chem.

29.96 Ų

Lipophilicity

Log Po/w (iLOGP)?

iLOGP: in-house physics-based method implemented from
Daina A et al. 2014 J. Chem. Inf. Model.

1.3
Log Po/w (XLOGP3)?

XLOGP3: Atomistic and knowledge-based method calculated by
XLOGP program, version 3.2.2, courtesy of CCBG, Shanghai Institute of Organic Chemistry

1.29
Log Po/w (WLOGP)?

WLOGP: Atomistic method implemented from
Wildman SA and Crippen GM. 1999 J. Chem. Inf. Model.

1.6
Log Po/w (MLOGP)?

MLOGP: Topological method implemented from
Moriguchi I. et al. 1992 Chem. Pharm. Bull.
Moriguchi I. et al. 1994 Chem. Pharm. Bull.
Lipinski PA. et al. 2001 Adv. Drug. Deliv. Rev.

0.78
Log Po/w (SILICOS-IT)?

SILICOS-IT: Hybrid fragmental/topological method calculated by
FILTER-IT program, version 1.0.2, courtesy of SILICOS-IT, http://www.silicos-it.com

2.53
Consensus Log Po/w?

Consensus Log Po/w: Average of all five predictions

1.5

Water Solubility

Log S (ESOL):?

ESOL: Topological method implemented from
Delaney JS. 2004 J. Chem. Inf. Model.

-1.97
Solubility 1.58 mg/ml ; 0.0107 mol/l
Class?

Solubility class: Log S scale
Insoluble < -10 < Poorly < -6 < Moderately < -4 < Soluble < -2 Very < 0 < Highly

Very soluble
Log S (Ali)?

Ali: Topological method implemented from
Ali J. et al. 2012 J. Chem. Inf. Model.

-1.52
Solubility 4.45 mg/ml ; 0.0303 mol/l
Class?

Solubility class: Log S scale
Insoluble < -10 < Poorly < -6 < Moderately < -4 < Soluble < -2 Very < 0 < Highly

Very soluble
Log S (SILICOS-IT)?

SILICOS-IT: Fragmental method calculated by
FILTER-IT program, version 1.0.2, courtesy of SILICOS-IT, http://www.silicos-it.com

-3.0
Solubility 0.147 mg/ml ; 0.000998 mol/l
Class?

Solubility class: Log S scale
Insoluble < -10 < Poorly < -6 < Moderately < -4 < Soluble < -2 Very < 0 < Highly

Soluble

Pharmacokinetics

GI absorption?

Gatrointestinal absorption: according to the white of the BOILED-Egg

High
BBB permeant?

BBB permeation: according to the yolk of the BOILED-Egg

Yes
P-gp substrate?

P-glycoprotein substrate: SVM model built on 1033 molecules (training set)
and tested on 415 molecules (test set)
10-fold CV: ACC=0.72 / AUC=0.77
External: ACC=0.88 / AUC=0.94

No
CYP1A2 inhibitor?

Cytochrome P450 1A2 inhibitor: SVM model built on 9145 molecules (training set)
and tested on 3000 molecules (test set)
10-fold CV: ACC=0.83 / AUC=0.90
External: ACC=0.84 / AUC=0.91

No
CYP2C19 inhibitor?

Cytochrome P450 2C19 inhibitor: SVM model built on 9272 molecules (training set)
and tested on 3000 molecules (test set)
10-fold CV: ACC=0.80 / AUC=0.86
External: ACC=0.80 / AUC=0.87

No
CYP2C9 inhibitor?

Cytochrome P450 2C9 inhibitor: SVM model built on 5940 molecules (training set)
and tested on 2075 molecules (test set)
10-fold CV: ACC=0.78 / AUC=0.85
External: ACC=0.71 / AUC=0.81

No
CYP2D6 inhibitor?

Cytochrome P450 2D6 inhibitor: SVM model built on 3664 molecules (training set)
and tested on 1068 molecules (test set)
10-fold CV: ACC=0.79 / AUC=0.85
External: ACC=0.81 / AUC=0.87

No
CYP3A4 inhibitor?

Cytochrome P450 3A4 inhibitor: SVM model built on 7518 molecules (training set)
and tested on 2579 molecules (test set)
10-fold CV: ACC=0.77 / AUC=0.85
External: ACC=0.78 / AUC=0.86

No
Log Kp (skin permeation)?

Skin permeation: QSPR model implemented from
Potts RO and Guy RH. 1992 Pharm. Res.

-6.28 cm/s

Druglikeness

Lipinski?

Lipinski (Pfizer) filter: implemented from
Lipinski CA. et al. 2001 Adv. Drug Deliv. Rev.
MW ≤ 500
MLOGP ≤ 4.15
N or O ≤ 10
NH or OH ≤ 5

0.0
Ghose?

Ghose filter: implemented from
Ghose AK. et al. 1999 J. Comb. Chem.
160 ≤ MW ≤ 480
-0.4 ≤ WLOGP ≤ 5.6
40 ≤ MR ≤ 130
20 ≤ atoms ≤ 70

None
Veber?

Veber (GSK) filter: implemented from
Veber DF. et al. 2002 J. Med. Chem.
Rotatable bonds ≤ 10
TPSA ≤ 140

0.0
Egan?

Egan (Pharmacia) filter: implemented from
Egan WJ. et al. 2000 J. Med. Chem.
WLOGP ≤ 5.88
TPSA ≤ 131.6

0.0
Muegge?

Muegge (Bayer) filter: implemented from
Muegge I. et al. 2001 J. Med. Chem.
200 ≤ MW ≤ 600
-2 ≤ XLOGP ≤ 5
TPSA ≤ 150
Num. rings ≤ 7
Num. carbon > 4
Num. heteroatoms > 1
Num. rotatable bonds ≤ 15
H-bond acc. ≤ 10
H-bond don. ≤ 5

1.0
Bioavailability Score?

Abbott Bioavailability Score: Probability of F > 10% in rat
implemented from
Martin YC. 2005 J. Med. Chem.

0.55

Medicinal Chemistry

PAINS?

Pan Assay Interference Structures: implemented from
Baell JB. & Holloway GA. 2010 J. Med. Chem.

0.0 alert
Brenk?

Structural Alert: implemented from
Brenk R. et al. 2008 ChemMedChem

0.0 alert: heavy_metal
Leadlikeness?

Leadlikeness: implemented from
Teague SJ. 1999 Angew. Chem. Int. Ed.
250 ≤ MW ≤ 350
XLOGP ≤ 3.5
Num. rotatable bonds ≤ 7

No; 1 violation:MW<1.0
Synthetic accessibility?

Synthetic accessibility score: from 1 (very easy) to 10 (very difficult)
based on 1024 fragmental contributions (FP2) modulated by size and complexity penaties,
trained on 12'782'590 molecules and tested on 40 external molecules (r2 = 0.94)

1.81

Application In Synthesis of [ 56826-69-8 ]

* All experimental methods are cited from the reference, please refer to the original source for details. We do not guarantee the accuracy of the content in the reference.

  • Downstream synthetic route of [ 56826-69-8 ]

[ 56826-69-8 ] Synthesis Path-Downstream   1~1

  • 1
  • [ 56826-69-8 ]
  • [ 78364-55-3 ]
  • (E)-2-(2-(6,7-dihydroquinolin-8(5H)-ylidene)hydrazinyl)-6-fluorobenzo[d]thiazole [ No CAS ]
 

Historical Records

Technical Information

Categories

Related Functional Groups of
[ 56826-69-8 ]

Ketones

Chemical Structure| 53400-41-2

A156644 [53400-41-2]

7,8-Dihydroquinolin-5(6H)-one

Similarity: 0.92

Chemical Structure| 10470-83-4

A250977 [10470-83-4]

5,8-Quinolinequinone

Similarity: 0.84

Chemical Structure| 1122-62-9

A302917 [1122-62-9]

1-(Pyridin-2-yl)ethanone

Similarity: 0.79

Chemical Structure| 127724-75-8

A110155 [127724-75-8]

3-Chloro-7,8-dihydroquinolin-5(6H)-one

Similarity: 0.76

Chemical Structure| 37398-49-5

A120461 [37398-49-5]

2-Acetylisonicotinonitrile

Similarity: 0.75

Related Parent Nucleus of
[ 56826-69-8 ]

Other Aromatic Heterocycles

Chemical Structure| 53400-41-2

A156644 [53400-41-2]

7,8-Dihydroquinolin-5(6H)-one

Similarity: 0.92

Chemical Structure| 10500-57-9

A371016 [10500-57-9]

5,6,7,8-Tetrahydroquinoline

Similarity: 0.79

Chemical Structure| 127724-75-8

A110155 [127724-75-8]

3-Chloro-7,8-dihydroquinolin-5(6H)-one

Similarity: 0.76

Chemical Structure| 1256822-12-4

A156527 [1256822-12-4]

5,6,7,8-Tetrahydroquinoline-6-carboxylic acid

Similarity: 0.74

Chemical Structure| 71569-15-8

A398701 [71569-15-8]

5,6,7,8-Tetrahydroquinolin-5-amine

Similarity: 0.70