Home Cart Sign in  
Chemical Structure| 40515-89-7 Chemical Structure| 40515-89-7

Structure of 40515-89-7

Chemical Structure| 40515-89-7

*Storage: {[sel_prStorage]}

*Shipping: {[sel_prShipping]}

,{[proInfo.pro_purity]}

4.5 *For Research Use Only !

{[proInfo.pro_purity]}
Cat. No.: {[proInfo.prAm]} Purity: {[proInfo.pro_purity]}

Change View

Size Price VIP Price

US Stock

Global Stock

In Stock
{[ item.pr_size ]} Inquiry {[ getRatePrice(item.pr_usd,item.pr_rate,item.mem_rate,item.pr_is_large_size_no_price, item.vip_usd) ]}

US Stock: ship in 0-1 business day
Global Stock: ship in 5-7 days

  • {[ item.pr_size ]}

In Stock

- +

Please Login or Create an Account to: See VIP prices and availability

US Stock: ship in 0-1 business day
Global Stock: ship in 2 weeks

  • 1-2 Day Shipping
  • High Quality
  • Technical Support
Product Citations

Product Citations      Show More

Diaz, Juan ; Pizzio, Luis R. ; Pecchi, Gina ; Campos, Cristian H. ; Azocar, Laura ; Briones, Rodrigo , et al.

Abstract: The catalytic oxidation of phenethoxybenzene as a lignin model compound with a β-O-4 bond was conducted using the Keggin-type polyoxometalate nanocatalyst (TBA)5[PMo10V2O40]. The optimization of the process′s operational conditions was carried out using response surface methodol. The statistically significant variables in the process were determined using a fractional factorial design. Based on this selection, a central circumscribed composite exptl. design was used to maximize the phenethoxybenzene conversion, varying temperature, reaction time, and catalyst load. The optimal conditions that maximized the phenethoxybenzene conversion were 137 °C, 3.5 h, and 200 mg of catalyst. In addition, under the optimized conditions, the Kraft lignin catalytic depolymerization was carried out to validate the effectiveness of the process. The depolymerization degree was assessed by gel permeation chromatog. from which a significant decrease in the molar mass distribution Mw from 7.34 kDa to 1.97 kDa and a reduction in the polydispersity index PDI from 6 to 3 were observed Furthermore, the successful cleavage of the β-O-4 bond in the Kraft lignin was verified by gas chromatog.-mass spectrometry anal. of the reaction products. These results offer a sustainable alternative to efficiently converting lignin into valuable products.

Keywords: polyoxometalate nanocatalyst ; Keggin-type ; lignin model compound ; beta-O-4 bond ; heterogeneous catalysis ; green chemistry

Purchased from AmBeed:

Pham, Xuan-Tien ; Tran, Vy Anh ; Tran, Lan-Trinh Thi ; Nguyen, Tram Ngoc P ; Le, Thong Hoang ; Hoang, Huy , et al.

Abstract: The catalytic conversion of lignin model compounds was performed using Ru/C catalysts and an autoclave reactor. The Ru/C catalysts were prepared by the impregnation method using highly porous homemade activated carbon and characterized by XRD, SEM, and specific surface area. The catalytic reactions were performed in a high pressure/temperature reactor at different temperatures and with different solvents. The results showed that the novel Ru/C catalysts prepared from carbon supports activated by the KOH agent showed higher catalytic activity than the commercial catalyst. Ethanol and 2-propanol were suitable solvents for the cleavage of the β–O–4 ether bond of 2-phenoxy1-phenyl ethanol (~65–70% conversion) over a Ru/C-KOH-2 catalyst at 220 ◦C in comparison to tert-butanol and 1-propanol solvents (~43–47% conversion of 2-phenoxy-1-phenyl ethanol). Also, the increase in reaction temperature from 200 ◦C to 240 ◦C enhanced the cleavage of the ether bond with an increase in phenol selectivity from 9.4% to 19.5% and improved the catalytic conversion of 2-phenoxy-1-phenyl ethanol from 46.6% to 98.5% over the Ru/C-KOH-2 catalyst and ethanol solvent. The Ru/C-KOH-2 catalyst showed outstanding conversion (98.5%) of 2-phenoxy-1-phenylethanol at 240 ◦C, 1 h, ethanol solvent. This novel hierarchical porous activated carbon-supported ruthenium catalyst (Ru/C-KOH-2) can be applied for the further conversion of the lignin compound.

Keywords: active carbon ; biochar ; Ru/C ; lignin ; β-O-4 aryl ether

Purchased from AmBeed: ;

Rafael, Raphaela Azevedo ;

Abstract: The present thesis aims at studying the role of the support and metal particle size on the hydrodeoxygenation reactions (HDO) of benzyl phenyl ether (BPE), phenethoxybenzene (PEB), and diphenyl ether (DPE) chosen as model molecules representative of the main ether linkages present in the lignocellulosic biomass. The reactions were carried out in the liquid phase at 230 °C and 18 bar of H2. Pd-supported on different oxides (SiO2, TiO2, Nb2O5, Al2O3, ZrO2, and HZSM5) were synthesized by incipient wetness impregnation and deposition of metal particles prepared by the colloidal method. The acidic sites of the support promote the cracking of the C-O ether bond of BPE, but for PEB and DPE, this effect is less pronounced due to the higher energy required to break these linkages. The hydrogenolysis of the C-O ether bond takes place on the metallic Pd particles, producing the respective arenes. However, the Pd particle size can directly affect the product distribution after C-O cleavage. Due to the larger Pd particle size, impregnated catalysts favor the hydrogenolysis and exhibit a higher selectivity to alkylated products, whereas a smaller Pd particle size, obtained for catalysts prepared by the colloidal route, increases the selectivity to deoxygenated products. Over these catalysts, the formation of alkylated products is suppressed, but the hydrogenation of BPE, PEB, and DPE aromatic rings occurs in parallel to hydrogenolysis also promoted by Pd particles. The performance of Ru-based catalysts was also evaluated in the same reaction conditions. In the presence of Ru, alkylated products are produced even in the absence of acidic sites.

Keywords: Hydrodeoxygenation ; Hydrogenolysis ; Alkylation ; Ether linkage

Purchased from AmBeed:

Alternative Products

Product Details of [ 40515-89-7 ]

CAS No. :40515-89-7
Formula : C14H14O
M.W : 198.26
SMILES Code : C1(OCCC2=CC=CC=C2)=CC=CC=C1
MDL No. :MFCD00043544
InChI Key :JKSGBCQEHZWHHL-UHFFFAOYSA-N
Pubchem ID :142465

Safety of [ 40515-89-7 ]

GHS Pictogram:
Signal Word:Warning
Hazard Statements:H315-H319-H335
Precautionary Statements:P261-P305+P351+P338

Computational Chemistry of [ 40515-89-7 ] Show Less

Physicochemical Properties

Num. heavy atoms 15
Num. arom. heavy atoms 12
Fraction Csp3 0.14
Num. rotatable bonds 4
Num. H-bond acceptors 1.0
Num. H-bond donors 0.0
Molar Refractivity 62.23
TPSA ?

Topological Polar Surface Area: Calculated from
Ertl P. et al. 2000 J. Med. Chem.

9.23 Ų

Lipophilicity

Log Po/w (iLOGP)?

iLOGP: in-house physics-based method implemented from
Daina A et al. 2014 J. Chem. Inf. Model.

2.75
Log Po/w (XLOGP3)?

XLOGP3: Atomistic and knowledge-based method calculated by
XLOGP program, version 3.2.2, courtesy of CCBG, Shanghai Institute of Organic Chemistry

3.85
Log Po/w (WLOGP)?

WLOGP: Atomistic method implemented from
Wildman SA and Crippen GM. 1999 J. Chem. Inf. Model.

3.31
Log Po/w (MLOGP)?

MLOGP: Topological method implemented from
Moriguchi I. et al. 1992 Chem. Pharm. Bull.
Moriguchi I. et al. 1994 Chem. Pharm. Bull.
Lipinski PA. et al. 2001 Adv. Drug. Deliv. Rev.

3.61
Log Po/w (SILICOS-IT)?

SILICOS-IT: Hybrid fragmental/topological method calculated by
FILTER-IT program, version 1.0.2, courtesy of SILICOS-IT, http://www.silicos-it.com

3.77
Consensus Log Po/w?

Consensus Log Po/w: Average of all five predictions

3.46

Water Solubility

Log S (ESOL):?

ESOL: Topological method implemented from
Delaney JS. 2004 J. Chem. Inf. Model.

-3.82
Solubility 0.0298 mg/ml ; 0.00015 mol/l
Class?

Solubility class: Log S scale
Insoluble < -10 < Poorly < -6 < Moderately < -4 < Soluble < -2 Very < 0 < Highly

Soluble
Log S (Ali)?

Ali: Topological method implemented from
Ali J. et al. 2012 J. Chem. Inf. Model.

-3.74
Solubility 0.0361 mg/ml ; 0.000182 mol/l
Class?

Solubility class: Log S scale
Insoluble < -10 < Poorly < -6 < Moderately < -4 < Soluble < -2 Very < 0 < Highly

Soluble
Log S (SILICOS-IT)?

SILICOS-IT: Fragmental method calculated by
FILTER-IT program, version 1.0.2, courtesy of SILICOS-IT, http://www.silicos-it.com

-5.47
Solubility 0.000675 mg/ml ; 0.0000034 mol/l
Class?

Solubility class: Log S scale
Insoluble < -10 < Poorly < -6 < Moderately < -4 < Soluble < -2 Very < 0 < Highly

Moderately soluble

Pharmacokinetics

GI absorption?

Gatrointestinal absorption: according to the white of the BOILED-Egg

High
BBB permeant?

BBB permeation: according to the yolk of the BOILED-Egg

Yes
P-gp substrate?

P-glycoprotein substrate: SVM model built on 1033 molecules (training set)
and tested on 415 molecules (test set)
10-fold CV: ACC=0.72 / AUC=0.77
External: ACC=0.88 / AUC=0.94

No
CYP1A2 inhibitor?

Cytochrome P450 1A2 inhibitor: SVM model built on 9145 molecules (training set)
and tested on 3000 molecules (test set)
10-fold CV: ACC=0.83 / AUC=0.90
External: ACC=0.84 / AUC=0.91

Yes
CYP2C19 inhibitor?

Cytochrome P450 2C19 inhibitor: SVM model built on 9272 molecules (training set)
and tested on 3000 molecules (test set)
10-fold CV: ACC=0.80 / AUC=0.86
External: ACC=0.80 / AUC=0.87

Yes
CYP2C9 inhibitor?

Cytochrome P450 2C9 inhibitor: SVM model built on 5940 molecules (training set)
and tested on 2075 molecules (test set)
10-fold CV: ACC=0.78 / AUC=0.85
External: ACC=0.71 / AUC=0.81

No
CYP2D6 inhibitor?

Cytochrome P450 2D6 inhibitor: SVM model built on 3664 molecules (training set)
and tested on 1068 molecules (test set)
10-fold CV: ACC=0.79 / AUC=0.85
External: ACC=0.81 / AUC=0.87

Yes
CYP3A4 inhibitor?

Cytochrome P450 3A4 inhibitor: SVM model built on 7518 molecules (training set)
and tested on 2579 molecules (test set)
10-fold CV: ACC=0.77 / AUC=0.85
External: ACC=0.78 / AUC=0.86

No
Log Kp (skin permeation)?

Skin permeation: QSPR model implemented from
Potts RO and Guy RH. 1992 Pharm. Res.

-4.78 cm/s

Druglikeness

Lipinski?

Lipinski (Pfizer) filter: implemented from
Lipinski CA. et al. 2001 Adv. Drug Deliv. Rev.
MW ≤ 500
MLOGP ≤ 4.15
N or O ≤ 10
NH or OH ≤ 5

0.0
Ghose?

Ghose filter: implemented from
Ghose AK. et al. 1999 J. Comb. Chem.
160 ≤ MW ≤ 480
-0.4 ≤ WLOGP ≤ 5.6
40 ≤ MR ≤ 130
20 ≤ atoms ≤ 70

None
Veber?

Veber (GSK) filter: implemented from
Veber DF. et al. 2002 J. Med. Chem.
Rotatable bonds ≤ 10
TPSA ≤ 140

0.0
Egan?

Egan (Pharmacia) filter: implemented from
Egan WJ. et al. 2000 J. Med. Chem.
WLOGP ≤ 5.88
TPSA ≤ 131.6

0.0
Muegge?

Muegge (Bayer) filter: implemented from
Muegge I. et al. 2001 J. Med. Chem.
200 ≤ MW ≤ 600
-2 ≤ XLOGP ≤ 5
TPSA ≤ 150
Num. rings ≤ 7
Num. carbon > 4
Num. heteroatoms > 1
Num. rotatable bonds ≤ 15
H-bond acc. ≤ 10
H-bond don. ≤ 5

2.0
Bioavailability Score?

Abbott Bioavailability Score: Probability of F > 10% in rat
implemented from
Martin YC. 2005 J. Med. Chem.

0.55

Medicinal Chemistry

PAINS?

Pan Assay Interference Structures: implemented from
Baell JB. & Holloway GA. 2010 J. Med. Chem.

0.0 alert
Brenk?

Structural Alert: implemented from
Brenk R. et al. 2008 ChemMedChem

0.0 alert: heavy_metal
Leadlikeness?

Leadlikeness: implemented from
Teague SJ. 1999 Angew. Chem. Int. Ed.
250 ≤ MW ≤ 350
XLOGP ≤ 3.5
Num. rotatable bonds ≤ 7

No; 1 violation:MW<2.0
Synthetic accessibility?

Synthetic accessibility score: from 1 (very easy) to 10 (very difficult)
based on 1024 fragmental contributions (FP2) modulated by size and complexity penaties,
trained on 12'782'590 molecules and tested on 40 external molecules (r2 = 0.94)

1.53
 

Historical Records

Technical Information

Categories

Related Functional Groups of
[ 40515-89-7 ]

Aryls

Chemical Structure| 61439-59-6

A161972 [61439-59-6]

2-(4-(Benzyloxy)phenyl)ethanol

Similarity: 0.97

Chemical Structure| 177259-98-2

A451063 [177259-98-2]

2-(3-(Benzyloxy)phenyl)ethanol

Similarity: 0.95

Chemical Structure| 10484-56-7

A143536 [10484-56-7]

2-Butoxynaphthalene

Similarity: 0.92

Chemical Structure| 946-80-5

A403895 [946-80-5]

Benzyl Phenyl Ether

Similarity: 0.92

Chemical Structure| 5020-41-7

A329636 [5020-41-7]

2-(3-Methoxyphenyl)ethanol

Similarity: 0.91

Ethers

Chemical Structure| 61439-59-6

A161972 [61439-59-6]

2-(4-(Benzyloxy)phenyl)ethanol

Similarity: 0.97

Chemical Structure| 177259-98-2

A451063 [177259-98-2]

2-(3-(Benzyloxy)phenyl)ethanol

Similarity: 0.95

Chemical Structure| 10484-56-7

A143536 [10484-56-7]

2-Butoxynaphthalene

Similarity: 0.92

Chemical Structure| 946-80-5

A403895 [946-80-5]

Benzyl Phenyl Ether

Similarity: 0.92

Chemical Structure| 5020-41-7

A329636 [5020-41-7]

2-(3-Methoxyphenyl)ethanol

Similarity: 0.91