Structure of 40117-63-3
*Storage: {[sel_prStorage]}
*Shipping: {[sel_prShipping]}
The BI-3802 was designed by Boehringer Ingelheim and could be obtained free of charge through the Boehringer Ingelheim open innovation portal opnMe.com, associated with its negative control.
4.5
*For Research Use Only !
Change View
Size | Price | VIP Price | US Stock |
Global Stock |
In Stock | ||
{[ item.pr_size ]} |
Inquiry
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]} {[ getRatePrice(item.pr_usd,item.pr_rate,1,item.pr_is_large_size_no_price, item.discount_usd) ]} {[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]} |
Inquiry {[ getRatePrice(item.pr_usd,item.pr_rate,item.mem_rate,item.pr_is_large_size_no_price, item.vip_usd) ]} | Inquiry {[ item.pr_usastock ]} In Stock Inquiry - | {[ item.pr_chinastock ]} {[ item.pr_remark ]} In Stock 1-2 weeks - Inquiry - | Login | - + | Inquiry |
Please Login or Create an Account to: See VIP prices and availability
US Stock: ship in 0-1 business day
Global Stock: ship in 5-7 days
1-2weeks
Inquiry
{[ getRatePrice(item.pr_usd,item.pr_rate,item.mem_rate,item.pr_is_large_size_no_price, item.vip_usd) ]}
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]}
{[ getRatePrice(item.pr_usd,1,item.mem_rate,item.pr_is_large_size_no_price, item.pr_usd) ]}
Inquiry
{[ getRatePrice(item.pr_usd,item.pr_rate,1,item.pr_is_large_size_no_price, item.vip_usd) ]}
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]}
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]}
In Stock
- +
Please Login or Create an Account to: See VIP prices and availability
US Stock: ship in 0-1 business day
Global Stock: ship in 2 weeks
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
CAS No. : | 40117-63-3 |
Formula : | C8H14ClNO2 |
M.W : | 191.66 |
SMILES Code : | O=C(C1(CC2)CCN2CC1)O.[H]Cl |
MDL No. : | MFCD10001479 |
InChI Key : | JTYXRFSULOZNPH-UHFFFAOYSA-N |
Pubchem ID : | 66737825 |
GHS Pictogram: |
![]() |
Signal Word: | Warning |
Hazard Statements: | H302-H315-H319-H335 |
Precautionary Statements: | P261-P305+P351+P338 |
* All experimental methods are cited from the reference, please refer to the original source for details. We do not guarantee the accuracy of the content in the reference.
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
In N-methyl-acetamide; dichloromethane; | Step 4. Quinuclidin-4-ylcarbonyl chloride hydrochloride Quinuclidine-4-carboxylic acid hydrochloride (0.192 g, 0.001 mole) was suspended in dichloromethane (5 ml) and dimethylformamide (1 drop) and oxalyl chloride (0.436 ml. 0.635 g, 0.005 mole) were added. The resulting suspension was heated to reflux under an atmosphere of argon for six hours. Following concentration of the suspension in vacuo the residue was suspended in dichloromethane, concentrated in vacuo and finally dried in vacuo to give the title compound as a pale brown solid. |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
4.04 g, (91%) | With sodium hydroxide; In tetrahydrofuran; water; | Step 1. Quinuclidin-4-ylmethanol Quinuclidine-4-carboxylic acid hydrochloride (6.0 g, 0.03 1 mmoles) in tetrahydrofuran (300 ml) was treated with lithium aluminum hydride (5.0 g, 0.137 mmoles) at ambient temperature for 18 hours. Water (20 ml) and 10% aqueous sodium hydroxide (7.5 ml) was added carefully and the mixture filtered, washing with diethyl ether. The combined filtrates were evaporated to dryness to give the title compound as a white solid 4.04 g, (91%): MS (+ve ion electrospray) m/z 142 (MH+, 100%) |
With dimethylsulfide borane complex; In tetrahydrofuran; at 0 - 20℃;Heating / reflux; | Example 1(Quinuclidin-4-yl)methanol (Quinuclidin-4-yl)carboxylic acid was prepared from 4-cyanoquinuclidine (Oakwood Products) following the procedure of Grob and Renk, Helv. Chim. Acta, 37, 1681 (1954).To a stirred suspension of <strong>[40117-63-3]quinuclidine-4-carboxylic acid hydrochloride</strong> (100 mg, 0.523 mmol) in 3 mL of anhydrous tetrahydrofuran at 0 C. was added borane methylsulfide complex (42 mg, 0.553 mmol). The mixture was stirred at room temperature for 1 hr and heated to reflux overnight. The reaction was cooled to 0 C. and carefully treated with 1 mL of methanol. The solvent was then removed under reduced pressure to leave the desired alcohol. Yield 36 mg. MS (m/e): 141. | |
36 mg | With dimethylsulfide borane complex; In tetrahydrofuran; at 0℃;Reflux; | (Quinuclidin-4-yl)carboxylic acid was prepared from 4-cyanoquinuclidine (Oakwood Products) following the procedure of Grob and Renk, Helv. Chim. Acta, 37, 1681 (1954). To a stirred suspension of <strong>[40117-63-3]quinuclidine-4-carboxylic acid hydrochloride</strong> (100 mg, 0.523 mmol) in 3 mL of anhydrous tetrahydrofuran at 0 C. was added borane methylsulfide complex (42 mg, 0.553 mmol). The mixture was stirred at room temperature for 1 hr and heated to reflux overnight. The reaction was cooled to 0 C. and carefully treated with 1 mL of methanol. The solvent was then removed under reduced pressure to leave the desired alcohol. Yield 36 mg. MS (m/e): 141. |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
2.24 g (100%) | In tetrahydrofuran; | Step 1. Quinuclidin-4-ylmethanol Quinuclidine-4-carboxylic acid hydrochloride (3.0 g, 0.016 moles) was treated with lithium aluminium hydride (2.5 g, 0.066 moles) in tetrahydrofuran (150 ml) at ambient temperature for 18 hours. The reaction was worked up as in the method of Example 25 Step 1 to give the title compound 2.24 g (100%). MS (+ve electrospray) m/z 142 (MH+, 100%). |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
29.8% | Preparation of 3-fluorobenzyl quinuclidine-4-carboxylate (compound 91)A mixture of <strong>[40117-63-3]quinuclidine-4-carboxylic acid hydrochloride</strong> (100 mg, 0.52 mmol) and thionyl chloride (500 mu, 6.85 mmol) was refluxed for 2 hours. The reaction was cooled at room temperature and the solvent was accurately removed. The residue was suspended in dry DCM and treated with (3-fluorophenyl)methanol (65.8 mg, 0.52 mmol). The reaction was stirred at room temperature for 24 hours. The solvent was evaporated, the residue was dissolved in water (1 ml), basified with NaHCO3 and extracted twice with EtOAc. The combined organic layers were dried over Na2SO4, filtered and evaporated to obtain 3-fluorobenzyl quinuclidine-4-carboxylate (41 mg, 29.8 % yield), which was used in the next step without any further purification. | |
1. Preparation of 3-fluorobenzyl quinuclidine-4-carboxylate (Compound 91). A mixture of <strong>[40117-63-3]quinuclidine-4-carboxylic acid hydrochloride</strong> (100 mg, 0.52 mmol) and thionyl chloride (500 mul, 6.85 mmol) was refluxed for 2 hours. The reaction was cooled to room temperature, and the solvent was accurately removed. The residue was suspended in dry DCM and treated with (3-fluorophenyl)methanol (65.8 mg, 0.52 mmol). The reaction was stirred at room temperature for 24 hours. The solvent was evaporated, and the residue was dissolved in water (1 ml), basified with NaHCO3 and extracted twice with EtOAc. The combined organic layers were dried over Na2SO4, filtered, and evaporated to obtain 3-fluorobenzyl quinuclidine-4-carboxylate (41 mg, 29.8% yield), which was used in the next step without any further purification. |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
Step 5: (S)-4-((1-(5-(2-methoxyquinolin-1-ium-3-yl)-JH-imidazol-2-yl)- 7-(methylamino)- 7-oxoheptyl)carbamoyl)quinuclidin-1-ium mono L-tartrate salt (A5) A solution of <strong>[40117-63-3]4-carboxyquinuclidin-1-ium chlorhydrate</strong> (1.3 eq.) in DMF (0.2 M) was treated with TBTU (1.3 eq.) and NMM (2.6 eq.). The reaction mixture was stirred at room temperature for 10 minutes and then added to a solution of A4 in DMF (0.2 M). The reaction was stirred at RT for 2 h and subsequently was purified by RP-HPLC (Acetonitrile/H20 + 0.1 % TFA). Theproduct was obtained as TFA salt which was partitioned between DCM and sat. aq. NaHCO3. The organic phase was separated, dried over Na2504 and concentrated under reduced pressure. The resulting syrup was dissolved in acetonitrile/H20 (2:3) and treated with L-tartaric acid (1 eq.). The resulting solution was lyophilized to obtain the title compound. 1H-NMR (400 MHz, 300 K, DMSO-d6) oe 8.73 (br s, 1H), 7.94 (t, 2H, J 9.6 Hz), 7.76 (d, 1H, J 8.0 Hz), 7.67 (br s,1H), 7.60 (m, 2H), 7.42 (t, 1H, J8.0 Hz), 5.02 (m, 1H), 4.13 (s, 3H), 3.93 (s, 2H), 3.18 (t, 6H, J7.2 Hz), 2.54 (d, 3H, J4.4 Hz), 2.05-1.91 (m, 8H), 1.51-1.23 (m, 8H). MS (ESj C29H38N603:519 (M+H). |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
Step 5: (S)-4-((1-(5-(6-methoxynaphthalen-2-yl)-JH-imidazol-3-ium-2-yl)- 7-(methylamino)- 7-oxoheptyl)carbamoyl)quinuclidin-1-ium mono L-tartrate salt (E5) A solution of <strong>[40117-63-3]4-carboxyquinuclidin-1-ium chlorhydrate</strong> (1.3 eq.) in DMF (0.2 M) was treated with TBTU (1.3 eq.) and NMM (2.6 eq.). The reaction mixture was stirred at room temperature for 10 mm and then added to a solution of E4 in DMF (0.2 M). The reaction was stirred at RT for 2 h, then filtered and purified by RP-HPLC (CH3CN/H20 + 0.1 % TFA). The product was obtained as TFA salt which was partitioned between EtOAc and sat. aq. NaHCO3. The organicphase was separated, dried (Na2504) and concentrated under reduced pressure. The resulting pale yellow solid was dissolved in acetonitrile/H20 (1:1) and treated with L-tartaric acid (1 eq.). The resulting solution was lyophilized to obtain the title compound. (400 MHz, 300K, DMSOd 6) oe: 11.5 (br s, 1H), 8.14 (br s, 1H), 7.95-7.73 (m, 4H), 7.66 (m, 1H), 7.54 (m, 1H), 7.27 (d, 1H, J2 Hz), 7.12 (dd, 1H, J8.8 and 2.4 Hz), 4.99 (m, 1H), 3.89 (s, 2H), 3.86 (s, 3H), 3.16 (m,6H), 2.54 (d, J4.4 Hz), 3H), 2.02 (t, 2H, J7.4 Hz), 2.01 (m, 6H), 1.83 (m, 2H), 1.48 (m, 2H),1.35-1.15 (m, 4H). MS (ESj C30H39N503: 518 (M+H). |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
Step 8: (S)-4- ((1- (5- (2-methoxyquinolin-1-ium-3-yl)oxazol-2-yl)- 7- (methylamino)- 7-oxoheptyl)carbamoyl)quinuclidin-1-ium mono L-tartrate salt (F8)A solution of <strong>[40117-63-3]4-carboxyquinuclidin-1-ium chlorhydrate</strong> (1.3 eq.) in DMF (0.1 M) was treated with HOBt (1.3 eq.), EDC HC1 (1.3 eq.) and DIPEA (1.3 eq.). The reaction mixture was stirred at room temperature for 10 minutes and then added to F7. The reaction was stirred for at RT for 48 h, filtered and directly purified by RP-HPLC (Acetonitrile/H20 + 0.1 % TFA). The product was obtained as TFA salt which was partitioned between DCM and sat. aq. NaHCO3. Theorganic phase was separated dried over Na2504 and concentrated under reduced pressure. The resulting solid was dissolved in acetonitrile/H20 (1:1) and treated with L-tartaric acid (1 eq.). The resulting solution was lyophilized to obtain the title compound. MS (ESj C29H37N504: 520 (M+H). |
A199875 [71985-80-3]
1-Methylpiperidine-4-carboxylic acid hydrochloride
Similarity: 1.00
A177267 [68947-43-3]
1-Methylpiperidine-4-carboxylic acid
Similarity: 0.97
A342678 [919354-20-4]
4-Methylpiperidine-4-carboxylic acid hydrochloride
Similarity: 0.97
A482306 [5984-56-5]
Piperidine-4-carboxylic acid hydrochloride
Similarity: 0.94
A174778 [19999-64-5]
1-Methylpiperidine-3-carboxylic acid hydrochloride
Similarity: 0.92
A102284 [22766-67-2]
Ethyl quinuclidine-4-carboxylate hydrochloride
Similarity: 0.83
A268799 [22766-68-3]
Ethyl quinuclidine-4-carboxylate
Similarity: 0.80
A158629 [827-61-2]
1-Azabicyclo[2.2.2]octan-3-yl acetate
Similarity: 0.60
A327290 [67496-77-9]
Quinuclidin-4-ylmethanamine dihydrochloride
Similarity: 0.59
A747773 [18339-49-6]
1-Azabicyclo[2.2.2]octan-4-amine dihydrochloride
Similarity: 0.54