Home Cart Sign in  
Chemical Structure| 39944-62-2 Chemical Structure| 39944-62-2

Structure of 39944-62-2

Chemical Structure| 39944-62-2

*Storage: {[sel_prStorage]}

*Shipping: {[sel_prShipping]}

,{[proInfo.pro_purity]}

4.5 *For Research Use Only !

{[proInfo.pro_purity]}
Cat. No.: {[proInfo.prAm]} Purity: {[proInfo.pro_purity]}

Change View

Size Price VIP Price

US Stock

Global Stock

In Stock
{[ item.pr_size ]} Inquiry {[ getRatePrice(item.pr_usd,item.pr_rate,item.mem_rate,item.pr_is_large_size_no_price, item.vip_usd) ]}

US Stock: ship in 0-1 business day
Global Stock: ship in 5-7 days

  • {[ item.pr_size ]}

In Stock

- +

Please Login or Create an Account to: See VIP prices and availability

US Stock: ship in 0-1 business day
Global Stock: ship in 2 weeks

  • 1-2 Day Shipping
  • High Quality
  • Technical Support
Product Citations

Alternative Products

Product Details of [ 39944-62-2 ]

CAS No. :39944-62-2
Formula : C4H9ClN6
M.W : 176.61
SMILES Code : NC1=NC(N)=C(N)C(N)=N1.[H]Cl
MDL No. :MFCD00859060

Safety of [ 39944-62-2 ]

Application In Synthesis of [ 39944-62-2 ]

* All experimental methods are cited from the reference, please refer to the original source for details. We do not guarantee the accuracy of the content in the reference.

  • Downstream synthetic route of [ 39944-62-2 ]

[ 39944-62-2 ] Synthesis Path-Downstream   1~2

  • 1
  • [ 96-26-4 ]
  • [ 39944-62-2 ]
  • [ 945-24-4 ]
YieldReaction ConditionsOperation in experiment
2,4,5,6-Tetraminopyrimidine.H2SO4.H2O (75.0 g, 0.293 mole) was added to a stirred solution of BaCl2.2H2O (71.5 g, 0.293 mole) in H2O (1.45 l.) at 85-90 C. The mixture was stirred rapidly at about 90 C. for 15 min, cooled to 40 C., and filtered from BaSO4, which was washed thoroughly on a funnel with H2O. The clear, yellow filtrate was then diluted further with H2O to give a volume of 4.35 l. This solution of the tetraminopyrimidine.2HCl was then added to a solution of NaOAc (4.35 l. of 4 N) in which dihydroxyacetone (79.3 g, 0.88 mole) and cysteine.HCl.H2O (51.5 g, 0.293 mole) had just been dissolved. The resulting solution was stirred mechanically at room temperature while a slow stream of air was continuously passed through it for 26 hr. (Yellow-orange solid began separating after 2 hr.) The mixture was then kept in a refrigerator for 16 hr before the solid was collected, washed successively with cold H2O, EtOH, and Et2O before it was dried to constant weight in vacuo over P2O5 at 25 C. [The crude product mixture (47 g) was weighed in order to obtain an estimate of the volume of 48% HBr required to form hydrobromide salts.] A mechanically stirred mixture of the dried solid and EtOH (6.05 l.) was heated to 70 C., and a solution of 48% HBr (28 ml) in EtOH (490 ml) was added in a thin stream while the mixture was maintained at 70-75 C. The mixture was then refluxed for about 5 min with rapid stirring while nearly all of the solid dissolved. The hot solution was treated with Norit and filtered through a Celite mat. The clear yellow filtrate was kept in a refrigerator overnight while a first crop of orange-colored solid separated. The collected solid was washed with EtOH, then dried in vacuo (56 C. over P2O5) to give 17.2 g of product. The filtrate was concentrated by evaporation (rotary evaporator, H2O aspirator, bath to 35 C.) to about 2 l. and then refrigerated to give a second crop, which was dried as before, of 10.2 g; total yield 27.4 g (34%). The 1H NMR spectrum of this material in CF3CO2D showed it to contain a barely detectable amount of methyl substituted 2,4-diaminopteridine.HBr as evidenced by very weak signals at delta2.83 (CH3) and delta8.85 (pteridine ring H). Strong signals produced by the desired product occur at delta5.28 (6-CH2O) and delta9.08 (C7-H). The proportion of desired product to the methyl-substituted contaminant was estimated from the 1H NMR integrals to be 20:1. The 1H NMR spectrum also revealed retention of a small amount of EtOH in the product dried as described but not enough to interfere with the conversion of it to 2.
With sodium acetate; DL-cysteine hydrochloride; In water; at 20℃; for 26h; 2,4,5,6-Tetraminopyrimidine.H2SO4.H2O (75.0 g, 0.293 mole) was added to a stirred solution of BaCl2.2H2O (71.5 g, 0.293 mole) in H2O (1.45 l.) at 85-90 C. The mixture was stirred rapidly at about 90 C. for 15 min, cooled to 40 C., and filtered from BaSO4, which was washed thoroughly on a funnel with H2O. The clear, yellow filtrate was then diluted further with H2O to give a volume of 4.35 l. This solution of the tetraminopyrimidine.2HCl was then added to a solution of NaOAc (4.35 l. of 4 N) in which dihydroxyacetone (79.3 g, 0.88 mole) and cysteine.HCl.H2O (51.5 g, 0.293 mole) had just been dissolved. The resulting solution was stirred mechanically at room temperature while a slow stream of air was continuously passed through it for 26 hr. (Yellow-orange solid began separating after 2 hr.) The mixture was then kept in a refrigerator for 16 hr before the solid was collected, washed successively with cold H2O, EtOH, and Et2O before it was dried to constant weight in vacuo over P2O5 at 25 C. [The crude product mixture (47 g) was weighed in order to obtain an estimate of the volume of 48% HBr required to form hydrobromide salts.] A mechanically stirred mixture of the dried solid and EtOH (6.05 l.) was heated to 70 C., and a solution of 48% HBr (28 ml) in EtOH (490 ml) was added in a thin stream while the mixture was maintained at 70-75 C. The mixture was then refluxed for about 5 min with rapid stirring while nearly all of the solid dissolved. The hot solution was treated with Norit and filtered through a Celite mat. The clear yellow filtrate was kept in a refrigerator overnight while a first crop of orange-colored solid separated. The collected solid was washed with EtOH, then dried in vacuo (56 C. over P2O5) to give 17.2 g of product. The filtrate was concentrated by evaporation (rotary evaporator, H2O aspirator, bath to 35 C.) to about 2 l. and then refrigerated to give a second crop, which was dried as before, of 10.2 g; total yield 27.4 g (34%). The 1H NMR spectrum of this material in CF3CO2D showed it to contain a barely detectable amount of methyl substituted 2,4-diaminopteridine.HBr as evidenced by very weak signals at 62.83 (CH3) and 68.85 (pteridine ring H). Strong signals produced by the desired product occur at delta5.28 (6-CH2O) and 69.08 (C7-H). The proportion of desired product to the methyl-substituted contaminant was estimated from the 1H NMR integrals to be 20:1. The 1H NMR spectrum also revealed retention of a small amount of EtOH in the product dried as described but not enough to interfere with the conversion of it to 2.
  • 2
  • [ 96-26-4 ]
  • [ 5392-28-9 ]
  • [ 10318-18-0 ]
  • [ 39944-62-2 ]
  • barium(II) chloride [ No CAS ]
  • [ 945-24-4 ]
YieldReaction ConditionsOperation in experiment
3,8 g (72%) With selenium(IV) oxide; sodium acetate; In water; 1. 2,4-DIAMINO-6-HYDROXYMETHYLPTERIDINE SPC2 A solution of 6.4 grams of barium chloride in a minimum amount of hot water was added with stirring at a temperature of 70-80 C to a suspension of 7.6 grams of 2,4,5,6-tetraaminopyrimidine sulphate in 104 ml water. The resulting suspension was stirred for 30 minutes and the formed barium sulphate was removed by filtration and washed on the funnel with 26 ml water at a temperature of 70 C. The solution containing the 2,4,5,6-tetraaminopyrimidine dihydrochloride is diluted with water to a final volume of 400 ml. A solution of 128 grams of sodium acetate, 136 grams of bisulphite addition product of 1,3-dihydroxyacetone (free of methyl glyoxal) and 46 grams of cysteine hydrochloride in 390 ml water was prepared at room temperature in a 2 liter three-necked flask fitted with a stirrer, an air-bubbling system and a dropping funnel. To this solution, the 400 ml of the previously prepared solution of 2,4,5,6-tetraaminopyrimidine dihydrochloride were added with energic stirring and air-bubbling. A solution of 8 g of selenium dioxide dissolved in the minimum amount of water was made. Half of this solution was added to the reaction mixture immediately after the addition of the tetraaminopyrimidine solution and the other half 4-7 hours later. The reaction was allowed to proceed for 24 hours at room temperature. The reaction can be carried out in a similar manner in a range of temperatures from 20 to 100 C, but the yield is lower. After the end of the reaction, the solution is kept 1 hour at 4 C. The precipitate was filtered off, washed on the funnel with cold alcohol, alcohol:ethyl ether (1:1) and ethyl ether, then dried under vacuum for 24 hours at 50. The yield is 3,8 g (72 %) of 2,4-diamino-6-hydroxymethylpteridine.
 

Historical Records