Structure of 38186-82-2
*Storage: {[sel_prStorage]}
*Shipping: {[sel_prShipping]}
The BI-3802 was designed by Boehringer Ingelheim and could be obtained free of charge through the Boehringer Ingelheim open innovation portal opnMe.com, associated with its negative control.
4.5
*For Research Use Only !
Change View
Size | Price | VIP Price | US Stock |
Global Stock |
In Stock | ||
{[ item.pr_size ]} |
Inquiry
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]} {[ getRatePrice(item.pr_usd,item.pr_rate,1,item.pr_is_large_size_no_price, item.discount_usd) ]} {[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]} |
Inquiry {[ getRatePrice(item.pr_usd,item.pr_rate,item.mem_rate,item.pr_is_large_size_no_price, item.vip_usd) ]} | Inquiry {[ item.pr_usastock ]} In Stock Inquiry - | {[ item.pr_chinastock ]} {[ item.pr_remark ]} In Stock 1-2 weeks - Inquiry - | Login | - + | Inquiry |
Please Login or Create an Account to: See VIP prices and availability
US Stock: ship in 0-1 business day
Global Stock: ship in 5-7 days
1-2weeks
Inquiry
{[ getRatePrice(item.pr_usd,item.pr_rate,item.mem_rate,item.pr_is_large_size_no_price, item.vip_usd) ]}
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]}
{[ getRatePrice(item.pr_usd,1,item.mem_rate,item.pr_is_large_size_no_price, item.pr_usd) ]}
Inquiry
{[ getRatePrice(item.pr_usd,item.pr_rate,1,item.pr_is_large_size_no_price, item.vip_usd) ]}
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]}
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]}
In Stock
- +
Please Login or Create an Account to: See VIP prices and availability
US Stock: ship in 0-1 business day
Global Stock: ship in 2 weeks
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
CAS No. : | 38186-82-2 |
Formula : | C6H7ClN2 |
M.W : | 142.59 |
SMILES Code : | NC1=CC(C)=C(Cl)N=C1 |
MDL No. : | MFCD03095087 |
InChI Key : | VSBISZPNLZFTPG-UHFFFAOYSA-N |
Pubchem ID : | 12295607 |
GHS Pictogram: |
![]() |
Signal Word: | Warning |
Hazard Statements: | H302-H312-H332 |
Precautionary Statements: | P280 |
Num. heavy atoms | 9 |
Num. arom. heavy atoms | 6 |
Fraction Csp3 | 0.17 |
Num. rotatable bonds | 0 |
Num. H-bond acceptors | 1.0 |
Num. H-bond donors | 1.0 |
Molar Refractivity | 38.62 |
TPSA ? Topological Polar Surface Area: Calculated from |
38.91 Ų |
Log Po/w (iLOGP)? iLOGP: in-house physics-based method implemented from |
1.37 |
Log Po/w (XLOGP3)? XLOGP3: Atomistic and knowledge-based method calculated by |
1.5 |
Log Po/w (WLOGP)? WLOGP: Atomistic method implemented from |
1.63 |
Log Po/w (MLOGP)? MLOGP: Topological method implemented from |
0.75 |
Log Po/w (SILICOS-IT)? SILICOS-IT: Hybrid fragmental/topological method calculated by |
1.74 |
Consensus Log Po/w? Consensus Log Po/w: Average of all five predictions |
1.4 |
Log S (ESOL):? ESOL: Topological method implemented from |
-2.16 |
Solubility | 0.981 mg/ml ; 0.00688 mol/l |
Class? Solubility class: Log S scale |
Soluble |
Log S (Ali)? Ali: Topological method implemented from |
-1.92 |
Solubility | 1.7 mg/ml ; 0.0119 mol/l |
Class? Solubility class: Log S scale |
Very soluble |
Log S (SILICOS-IT)? SILICOS-IT: Fragmental method calculated by |
-2.64 |
Solubility | 0.324 mg/ml ; 0.00227 mol/l |
Class? Solubility class: Log S scale |
Soluble |
GI absorption? Gatrointestinal absorption: according to the white of the BOILED-Egg |
High |
BBB permeant? BBB permeation: according to the yolk of the BOILED-Egg |
Yes |
P-gp substrate? P-glycoprotein substrate: SVM model built on 1033 molecules (training set) |
No |
CYP1A2 inhibitor? Cytochrome P450 1A2 inhibitor: SVM model built on 9145 molecules (training set) |
No |
CYP2C19 inhibitor? Cytochrome P450 2C19 inhibitor: SVM model built on 9272 molecules (training set) |
No |
CYP2C9 inhibitor? Cytochrome P450 2C9 inhibitor: SVM model built on 5940 molecules (training set) |
No |
CYP2D6 inhibitor? Cytochrome P450 2D6 inhibitor: SVM model built on 3664 molecules (training set) |
No |
CYP3A4 inhibitor? Cytochrome P450 3A4 inhibitor: SVM model built on 7518 molecules (training set) |
No |
Log Kp (skin permeation)? Skin permeation: QSPR model implemented from |
-6.1 cm/s |
Lipinski? Lipinski (Pfizer) filter: implemented from |
0.0 |
Ghose? Ghose filter: implemented from |
None |
Veber? Veber (GSK) filter: implemented from |
0.0 |
Egan? Egan (Pharmacia) filter: implemented from |
0.0 |
Muegge? Muegge (Bayer) filter: implemented from |
1.0 |
Bioavailability Score? Abbott Bioavailability Score: Probability of F > 10% in rat |
0.55 |
PAINS? Pan Assay Interference Structures: implemented from |
0.0 alert |
Brenk? Structural Alert: implemented from |
1.0 alert: heavy_metal |
Leadlikeness? Leadlikeness: implemented from |
No; 1 violation:MW<1.0 |
Synthetic accessibility? Synthetic accessibility score: from 1 (very easy) to 10 (very difficult) |
1.6 |
* All experimental methods are cited from the reference, please refer to the original source for details. We do not guarantee the accuracy of the content in the reference.
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
97% | With iron; acetic acid In water for 3 h; | Iron (Fe) powder (9.75 g, 0.174 mol, Sigma-Aldrich) was added in portions over a period of 2h to a stirred solution of 2-chloro-3-methyl-5-nitropyridine (10 g, 0.058 mol, Combi-blocks) in acetic acid/water (29 mL: 88 mL). After 3h, the reaction mixture was filtered through celite and the filter cake was washed with ethyl acetate. The organic layer was separated and the aqueous layer was extracted with EtOAc. The combined organic layers were washed with aqueous sodium bicarbonate, brine and dried over Na2S04. The solvent was removed under reduced pressure to yield 6-chloro-5-methylpyridine-3-amine as a brown solid (8.0g; 97percent). MS m/z = 142.03 [M+H]+.1H-NMR (300MHZ, DMSO-d6): 7.54 (d, J=30 Hz, 1H), 6.91-6.90 (dd, J = 0.6 Hz & 2.7 Hz, 1H), 5.39 (s, 2H), 2.17 (s, 3H) |
97% | With iron; acetic acid In water for 5 h; | Iron powder (9.75 g, 0.17 mol) was added in portions over a period of 2 h to a stirred solution of 2-chloro-3-methyl-5-nitropyridine (10 g, 58.00 mmol, Combi-blocks) in HOAc/water (29 mL : 88 mL). After 3 h, the reaction mixture was filtered through Celite® filter aid and the filter cake was washed with EtOAc. The organic layer was separated and the aqueous layer was extracted with EtOAc. The combined organic layers were washed with aqueous sodium bicarbonate, brine and dried over Na2SO4. The solvent was removed under reduced pressure to yield 6-chloro-5- methylpyridine-3-amine as a brown solid (269A, 8.00 g; 97percent). MS m/z = 142.03 [M+H]+. 1H-NMR (300MHz, DMSO-d6): 7.54 (d, J=30 Hz, 1 H), 6.91 -6.90 (dd, J = 0.6 Hz & 2.7 Hz, 1 H), 5.39 (s, 2H), 2.17 (s, 3H) |
42% | With water; iron; ammonium chloride In methanol at 20 - 50℃; for 3.08333 h; Heating / reflux | Reference Example 33 6-chloro-5-methylpyridine-3-amine; Reduced iron (793 mg) was added to an aqueous solution (25 mL) of ammonium chloride (1.27 g), and the mixture was stirred at room temperature for 5 min. A solution (10 mL) of 2-chloro-3-methyl-5-nitropyridine (816 mg) in methanol was added dropwise over 10 min. The reaction mixture was stirred at 40° C. for 20 min and at 50° C. for 1.5 hr and further refluxed for 1 hr. The reaction mixture was filtered through celite, and celite was washed with methanol. Methanol was mostly removed by concentration under reduced pressure, and saturated aqueous sodium hydrogencarbonate solution was added. The mixture was extracted with ethyl acetate. The extract was washed with saturated brine, dried over anhydrous magnesium sulfate, and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (eluent: hexane-ethyl acetate=19:1-->7:3) to give the title compound as a solid (yield 280 mg, 42percent). 1H-NMR (CDCl3) δ: 3.62 (2H, br), 6.88-6.89 (1H, m), 7.70-7.71 (1H, m). |
42% | With iron; ammonium chloride In methanol at 40℃; for 2.83333 h; Heating | Reference Example 136 6-Chloro-5-methylpyridine-3-amine Reduced iron (793 mg) was added to an aqueous solution (25 mL) of ammonium chloride (1.27 g), and the mixture was stirred at room temperature for 5 min. A solution (10 mL) of 2-chloro-3-methyl-5-nitropyridine (816 mg) in methanol was added dropwise over 10 min. The reaction mixture was stirred at 40°C for 20 min and at 50°C for 1.5 hr and further refluxed under heating for 1 hr. The reaction mixture was filtered through celite, and celite was washed with methanol. Methanol was mostly removed by concentrated under reduced pressure, and saturated aqueous sodium hydrogencarbonate solution was added. The mixture was extracted with ethyl acetate. The extract was washed with saturated brine, dried over anhydrous magnesium sulfate, and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (eluent: hexane-ethyl acetate=19:1→7:3) to give the title compound as a solid (yield 280 mg, 42percent). 1H-NMR (CDCl3)δ: 2.29 (3H, s), 3.62 (2H, br), 6.88-6.89 (1H, m), 7.70-7.71 (1H, m). |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
89% | With acetic acid In ethyl acetate | 19a. 5-Amino-2-chloro-3-methylpyridine 2-Chloro-3-methyl-5-nitropyridine (15 g, 86.9 mmol; from Maybridge Chemical Co.) was dissolved in a solution of H2 O/AcOH (5:1, 60 mL). Iron powder was added to the reaction mixture while maintaining the temperature below 40° C., and the mixture was stirred for 5 hours. The mixture was filtered through celite and the aqueous filtrate was extracted with EtOAc (4*). The filter cake was washed with EtOAc, and the EtOAc solutions were combined, dried (MgSO4), concentrated and chromatographed (silica gel; CHCl3 /MeOH, 98:2) to afford an orange solid (2.3 g, 89percent): 1 H NMR (CD3 OD, 300 MHz) δ2.25 (s, 3H), 7.01 (d, J=2.0 Hz, 1H), 7.58 (d, J=2.0 Hz, 1H); MS (CI/NH3) m/z: 243/245 (M+H)+. |
A268256 [66909-38-4]
6-Chloro-4-methylpyridin-3-amine
Similarity: 0.94
A107985 [99368-68-0]
6-Chloro-5-(trifluoromethyl)pyridin-3-amine
Similarity: 0.79
A504868 [22280-56-4]
2-Chloro-3-methyl-5-nitropyridine
Similarity: 0.79
A264684 [1823003-95-7]
2-Bromo-6-chloro-5-methylpyridin-3-amine
Similarity: 0.79
A268256 [66909-38-4]
6-Chloro-4-methylpyridin-3-amine
Similarity: 0.94
A107985 [99368-68-0]
6-Chloro-5-(trifluoromethyl)pyridin-3-amine
Similarity: 0.79
A264684 [1823003-95-7]
2-Bromo-6-chloro-5-methylpyridin-3-amine
Similarity: 0.79
A268256 [66909-38-4]
6-Chloro-4-methylpyridin-3-amine
Similarity: 0.94
A107985 [99368-68-0]
6-Chloro-5-(trifluoromethyl)pyridin-3-amine
Similarity: 0.79
A504868 [22280-56-4]
2-Chloro-3-methyl-5-nitropyridine
Similarity: 0.79
A264684 [1823003-95-7]
2-Bromo-6-chloro-5-methylpyridin-3-amine
Similarity: 0.79