Structure of 351456-45-6
*Storage: {[sel_prStorage]}
*Shipping: {[sel_prShipping]}
The BI-3802 was designed by Boehringer Ingelheim and could be obtained free of charge through the Boehringer Ingelheim open innovation portal opnMe.com, associated with its negative control.
4.5
*For Research Use Only !
Change View
Size | Price | VIP Price | US Stock |
Global Stock |
In Stock | ||
{[ item.pr_size ]} |
Inquiry
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]} {[ getRatePrice(item.pr_usd,item.pr_rate,1,item.pr_is_large_size_no_price, item.discount_usd) ]} {[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]} |
Inquiry {[ getRatePrice(item.pr_usd,item.pr_rate,item.mem_rate,item.pr_is_large_size_no_price, item.vip_usd) ]} | Inquiry {[ item.pr_usastock ]} In Stock Inquiry - | {[ item.pr_chinastock ]} {[ item.pr_remark ]} In Stock 1-2 weeks - Inquiry - | Login | - + | Inquiry |
Please Login or Create an Account to: See VIP prices and availability
US Stock: ship in 0-1 business day
Global Stock: ship in 5-7 days
1-2weeks
Inquiry
{[ getRatePrice(item.pr_usd,item.pr_rate,item.mem_rate,item.pr_is_large_size_no_price, item.vip_usd) ]}
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]}
{[ getRatePrice(item.pr_usd,1,item.mem_rate,item.pr_is_large_size_no_price, item.pr_usd) ]}
Inquiry
{[ getRatePrice(item.pr_usd,item.pr_rate,1,item.pr_is_large_size_no_price, item.vip_usd) ]}
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]}
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]}
In Stock
- +
Please Login or Create an Account to: See VIP prices and availability
US Stock: ship in 0-1 business day
Global Stock: ship in 2 weeks
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
CAS No. : | 351456-45-6 |
Formula : | C7H4ClIN2 |
M.W : | 278.48 |
SMILES Code : | ClC2=CC=C1[NH]N=C(C1=C2)I |
MDL No. : | MFCD06739146 |
InChI Key : | ZPFBQBOZEDHSGM-UHFFFAOYSA-N |
Pubchem ID : | 22352410 |
GHS Pictogram: |
![]() |
Signal Word: | Warning |
Hazard Statements: | H302-H315-H319-H335 |
Precautionary Statements: | P261-P305+P351+P338 |
Num. heavy atoms | 11 |
Num. arom. heavy atoms | 9 |
Fraction Csp3 | 0.0 |
Num. rotatable bonds | 0 |
Num. H-bond acceptors | 1.0 |
Num. H-bond donors | 1.0 |
Molar Refractivity | 53.82 |
TPSA ? Topological Polar Surface Area: Calculated from |
28.68 Ų |
Log Po/w (iLOGP)? iLOGP: in-house physics-based method implemented from |
1.54 |
Log Po/w (XLOGP3)? XLOGP3: Atomistic and knowledge-based method calculated by |
2.87 |
Log Po/w (WLOGP)? WLOGP: Atomistic method implemented from |
2.82 |
Log Po/w (MLOGP)? MLOGP: Topological method implemented from |
2.88 |
Log Po/w (SILICOS-IT)? SILICOS-IT: Hybrid fragmental/topological method calculated by |
3.63 |
Consensus Log Po/w? Consensus Log Po/w: Average of all five predictions |
2.75 |
Log S (ESOL):? ESOL: Topological method implemented from |
-3.98 |
Solubility | 0.0292 mg/ml ; 0.000105 mol/l |
Class? Solubility class: Log S scale |
Soluble |
Log S (Ali)? Ali: Topological method implemented from |
-3.13 |
Solubility | 0.206 mg/ml ; 0.000738 mol/l |
Class? Solubility class: Log S scale |
Soluble |
Log S (SILICOS-IT)? SILICOS-IT: Fragmental method calculated by |
-4.47 |
Solubility | 0.00933 mg/ml ; 0.0000335 mol/l |
Class? Solubility class: Log S scale |
Moderately soluble |
GI absorption? Gatrointestinal absorption: according to the white of the BOILED-Egg |
High |
BBB permeant? BBB permeation: according to the yolk of the BOILED-Egg |
Yes |
P-gp substrate? P-glycoprotein substrate: SVM model built on 1033 molecules (training set) |
No |
CYP1A2 inhibitor? Cytochrome P450 1A2 inhibitor: SVM model built on 9145 molecules (training set) |
Yes |
CYP2C19 inhibitor? Cytochrome P450 2C19 inhibitor: SVM model built on 9272 molecules (training set) |
No |
CYP2C9 inhibitor? Cytochrome P450 2C9 inhibitor: SVM model built on 5940 molecules (training set) |
No |
CYP2D6 inhibitor? Cytochrome P450 2D6 inhibitor: SVM model built on 3664 molecules (training set) |
No |
CYP3A4 inhibitor? Cytochrome P450 3A4 inhibitor: SVM model built on 7518 molecules (training set) |
No |
Log Kp (skin permeation)? Skin permeation: QSPR model implemented from |
-5.96 cm/s |
Lipinski? Lipinski (Pfizer) filter: implemented from |
0.0 |
Ghose? Ghose filter: implemented from |
None |
Veber? Veber (GSK) filter: implemented from |
0.0 |
Egan? Egan (Pharmacia) filter: implemented from |
0.0 |
Muegge? Muegge (Bayer) filter: implemented from |
0.0 |
Bioavailability Score? Abbott Bioavailability Score: Probability of F > 10% in rat |
0.55 |
PAINS? Pan Assay Interference Structures: implemented from |
0.0 alert |
Brenk? Structural Alert: implemented from |
1.0 alert: heavy_metal |
Leadlikeness? Leadlikeness: implemented from |
No; 1 violation:MW<0.0 |
Synthetic accessibility? Synthetic accessibility score: from 1 (very easy) to 10 (very difficult) |
2.1 |
* All experimental methods are cited from the reference, please refer to the original source for details. We do not guarantee the accuracy of the content in the reference.
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
In tetrahydrofuran; ethyl acetate; | (b) Intermediate 1b-5-Chloro-3-iodo-1-[2-(trimethylsilanyl)-ethoxymethyl]-1H-indazole: <strong>[351456-45-6]5-Chloro-3-iodo-1H-indazole</strong> 1a (8.86 g, 31.8 mmol) was dissolved in THF (100 mL) and cooled in an ice-salt bath to 0 C. Solid sodium t-butoxide (3.67 g, 38.2 mmol) was added, and the mixture stirred at 0 C. for 1 hour. 2-(Trimethylsilyl)ethoxymethyl chloride (7.96 g, 38.2 mmol) was then added, and stirring continued at 0 C. for 1 hour more. The solution was diluted with ethyl acetate (200 mL), washed with water (100 mL), and brine (100 mL). The organic layer was dried over magnesium sulfate, filtered, and concentrated. Silica gel chromatography (5 to 20% ethyl acetate in hexanes) afforded 1b (9.75 g, 75%) as a yellow oil: Rf=0.39 (5% ethyl acetate/hexanes); 1H NMR (CDCl3) delta 0.06 (s, 9H), 0.87 (t, 2H, J=8.1 Hz), 3.55 (t, 2H, J=8.1 Hz), 5.70 (s, 2H), 7.43 (dd, 1H, J=8.9,1.7 Hz), 7.49 (m, 2H). Anal. (C13H18C11N2OSi) C, H, N. |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
With sodium hydroxide; In ethyl acetate; | 3 M Aqueous NaOH (400 mL) and iodine flakes (35.3 g, 139 mmol) were added to the solution. After stirring at room temperature for 2 hours, the reaction mixture was neutralized to pH=6 with 20% aqueous citric acid, causing the dark color to change to light green. Saturated aqueous sodium thiosulfate (~400 mL) was added to the solution, causing the color to change from green to yellow, and the solution extracted with ethyl acetate (3*1000 mL). The combined organic extracts were dried over sodium sulfate, suction filtered through a coarse frit, and concentrated to a green sludge which was then redissolved in ethyl acetate (500 mL), filtered through a Celite pad, and concentrated to a green solid. Purification by silica gel chromatography (25% ethyl acetate in hexanes) yielded 5-Chloro-3-iodo-1H-indazole 1a (14.18 g, 44% from 5-amino-1H-indazole) as an off-white solid: mp=198-199 C.; Rf=0.53 (50% ethyl acetate/hexanes); 1H NMR (DMSO-d6) delta 7.44 (m, 2H), 7.60 (d, 1H, J=8.7 Hz), 13.68 (s, 1H). Anal. (C7H4C11N2) C, H, N. |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
90% | With iodine; potassium hydroxide; In N,N-dimethyl-formamide; at 20℃; for 3h; | General procedure: 3-Iodoindazoles were obtained by direct iodination of commercial indazoles by the method previously described by Bocchi [28] with slight modifications. A solution of 1H-indazole (3 g, 25.4 mmol), iodine (12.7 g, 50.03 mmol) and potassium hydroxide (5.34 g, 95.25 mmol)in DMF (7 mL) was stirred for 3 h at room temperature. The reaction was quenched by dilution with saturated solution of sodium bisulfite (150 mL) and a precipitated was formed. The precipitated was filtered over vacuum and washed with water (3 × 30 mL). The solid was left to dry at 30 C in a vacuum oven overnight obtaining 6.17 g of a pale yellow solid. Yield: 100%; m.p.: 136-138 C (lit.:[36] 134-136 C); IR (KBr) nu (cm-1): 3086 (NH); 424 (C-I). 1H-NMR delta (ppm): 13.50 (1H, s, H-1); 7.55(1H, d, J = 8.6 Hz, H-7); 7.45-7.40 (2H, m, H-6 and H-4); 7.19 (1H, dd, J = 7.5 Hz, H-5). 13C-NMR delta(ppm): 140.41; 127.22; 126.79; 121.23; 120.39; 110.51; 93.49; HRMS calculated for C7H5IN2: 243.9497,Found: 243.9499.3-Iodo-1H-indazole (1a). 3-Iodoindazoles were obtained by direct iodination of commercial indazoles by the method previously described by Bocchi [28] with slight modifications. A solution of 1H-indazole(3 g, 25.4 mmol), iodine (12.7 g, 50.03 mmol) and potassium hydroxide (5.34 g, 95.25 mmol) in DMF(7 mL) was stirred for 3 h at room temperature. The reaction was quenched by dilution with saturated solution of sodium bisulfite (150 mL) and a precipitated was formed. The precipitated was filtered over vacuum and washed with water (3 30 mL). The solid was left to dry at 30 C in a vacuum oven overnight obtaining 6.17 g of a pale yellow solid. Yield: 100%; m.p.: 136-138 C (lit.: [36] 134-136 C) |
85.3% | With iodine; potassium hydroxide; In N,N-dimethyl-formamide; at 20℃; | To a mixture of 5-chloro-1H-indazole(2.0 g, 13.1 mmol, 1.0 eq.), KOH (2.4 g,45.8 mmol) in DMF was added ?2 (6.6 g, 26.1 mmol, 2.0 eq.). The mixture was stirred at rt overnight, then quenched by aqueous Na2S2O4 solution. The mixture was extracted with EtOAc (2 x 50 mL). The combined organic layers were dried over anhydrous Na2SO4 and concentrated. The residue was purified by column chromatography (PE/EA =10:1) to provide 5-chloro-3 -iodo- 1H-indazole (3.1 g, 85.3%). |
85.3% | With iodine; potassium hydroxide; In N,N-dimethyl-formamide; at 20℃; | To a mixture of 5-chloro-lH-indazole (2.0 g, 13.1 mmol, 1.0 eq.), KOH (2.4 g, 45.8 mmol) in DMF was added I2 (6.6 g, 26.1 mmol, 2.0 eq.). The mixture was stirred at r.t. overnight, then quenched by aqueous Na2S204 solution. The mixture was extracted with EtOAc (2 x 50 mL). The combined organic layers were dried over anhydrous Na2S04 and concentrated. The residue was purified by column chromatography (PE/EA =10: 1) to provide 5-chloro-3-iodo-lH-indazole (3.1 g, 85.3%). |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
97% | With iodine; sodium hydroxide; In methanol; at 20℃; for 48h; | General procedure: 3-lodo-1H-indazole Iodine (5.8 g, 22.9 mmol) was added in portions over approximately 20 min to a solution of indazole (2.5 g, 21.7 mmol) in methanol (63 ml) and 2N sodium hydroxide solution (65 ml). The mixture remained colourless and a white precipitate slowly formed. The mixture was stirred at room temperature 48 h. The mixture was cooled in an ice-bath and 7.5 ml of concentrated hydrochloric acid was slowly added. The mixture was further acidified with 2N hydrochloric acid. 20% w/v Sodium thiosulfate pentahydrate solution was added until the iodine colour disappeared. The precipitate was filtered, washed with water and dried in the oven at 50 ºC to constant weight. The solid was taken up in methanol, filtered and the filtrated was evaporated under reduced pressure to give 5.0 g (20.6 mmol, 95%) of the title compound as a white solid. Purity 100%.1H NMR (300 MHz, CHLOROFORM-d) delta ppm 7.43-7.59 (m, 3H), 7.21-7.26 (m, 1H).UPLC/MS (3 min) retention time 1.56 min.LRMS: m/z 245 (M+1). |
97% | With iodine; sodium hydroxide; In methanol; at 20℃; for 48h; | General procedure: Iodine (5.8 g, 22.9 mmol) was added in portions over approximately 20 min to a solution of indazole (2.5 g, 21 .7 mmol) in methanol (63 ml) and 2N sodium hydroxide solution (65 ml). The mixture remained colourless and a white precipitate slowly formed. The mixture was stirred at room temperature 48 h. The mixture was cooled in an ice-bath and 7.5 ml of concentrated hydrochloric acid was slowly added. The mixture was further acidified with 2N hydrochloric acid. 20% w/v Sodium thiosulfate pentahydrate solution was added until the iodine colour disappeared. The precipitate was filtered, washed with water and dried in the oven at 50 C to constant weight. The solid was taken up in methanol, filtered and the filtrated was evaporated under reduced pressure to give 5.0 g (20.6 mmol, 95%) of the title compound as a white solid. Purity 100%. 1 H NMR (300 MHz, CHLOROFORM-d) delta ppm 7.43-7.59 (m, 3H), 7.21 -7.26 (m, 1 H). UPLC/MS (3 min) retention time 1 .56 min. LRMS: m/z 245 (M+1 ). |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
With dmap; triethylamine; at 20℃; | General procedure: 3-Iodo-1H-indazole (S1, 5.00 g, 19.5 mmol) was placed in a round-bottom flask and dissolved in tetrahydrofuran (100 mL). 4-Dimethylaminopyridine (0.24 g, 1.9 mmol, 0.1 equiv) was then added, followed by di-tert-butyl dicarbonate (5.4 mL, 24 mmol, 1.2 equiv). Triethylamine (5.4 mL, 39 mmol, 2.0 equiv) was slowly added to the clear, brown solution by syringe. The resulting solution was stirred at room temperature until it was complete as determined by TLC. The reaction was then diluted with water (75 mL) and ethyl acetate (50 mL). After separating the layers, the aqueous phase was extracted with additional ethyl acetate (3 × 50 mL). The combined organic layers were washed with brine (100 mL), then shaken over magnesium sulfate, filtered, and concentrated under reduced pressure to give the crude product. This material was purified by column chromatography over silica gel (hexanes/ethyl acetate: 100/0 to 90/10) to give the title compound as an orange solid (6.20 g, 93%). |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
70%; 25% | 5-Chloro-3-iodo-indazole (1.0 g, 3.6 mmol) was stirred in DMF (8 mL) at 0 C. under N2. NaH (60%, 159 mg, 3.96 mmol) was added, and the reaction stirred 45 min. Iodomethane (260 muL, 4.14 mmol) was added, and the reaction stirred 45 min while warming to rt. The solution was quenched with MeOH and concentrated. Purification by silica gel chromatography (10%-40% EtOAc/hexanes gave two isomers: 5-chloro-3-iodo-1-methyl-1H-indazole (740 mg, 70%) was isolated as the major isomer eluting first. 1H NMR (400 MHz, CDCl3): delta 4.09 (3H, s), 7.30 (1H, d, J=8.9 Hz), 7.39 (1H, dd, J=8.9, 1.6 Hz), 7.47 (1H, d, J=1.6 Hz). [M+H] calc'd for C8H6ClIN2, 293, 295. found 293, 295. 5-chloro-3-iodo-2-methyl-2H-indazole (268 mg, 25%) was isolated as the minor isomer eluting second. 1H NMR (400 MHz, CDCl3): delta 4.24 (3H, s), 7.24 (1H, dd, J=9.1, 2.0 Hz), 7.38 (d, 1H, J=1.9 Hz), 7.59 (1H, d, J=9.1 Hz). [M+H] calc'd for C8H6ClN2, 293, 295. found 293, 295. |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
65% | With copper(l) iodide; palladium 10% on activated carbon; triethylamine; triphenylphosphine; In ethanol; at 50℃; for 18h; | 0.30 g (1.1 mmol) of 5-chloro-3-iodo-l H-indazole was dissolved in 2 mL of ethanol to which 0.12 g (0.11 mmol, 10 wt%) of palladium carbon, 0.3 mL (2.2 mmol) of tetraethylamine, 0.11 g (0.431 mmol) of triphenylphosphine, 0.02 g (0.11 mmol) of copper(I) iodide and 0.13 mL (1.1 mmol) of 2-methylbut-3-yn-2-ol were added, followed by stirring at 50C for 18 hours. The reaction mixture was filtered through diatomaceous earth and concentrated. The resulting residue was separated by column chromatography to give 0.15g (65% yield) of 4-(5-chloro- lH-indazol-3- yl)-2-methylbut-3-yn-2-ol. 1H NMR (MeOD) delta : 7.71(s, 1H), 7.50(d, lH), 7.36(d, 1H), 1.63(s, 6H) |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
84.1% | With potassium carbonate; In acetonitrile; at 20℃; for 16h;Reflux; | To a suspension of <strong>[351456-45-6]5-chloro-3-iodo-1H-indazole</strong> (3.1 g, 11.2 mmol, 1.0 eq.) and potassium carbonate (3.1 g, 22.3 mmol, 2.0 eq.) in CH3CN (50 mL) was added tert-butyl bromoacetate (2.6 g, 13.4 mmol, 1.2 eq.) dropwise at r.t.. The resulting mixture was heated under reflux for 16 h, then cooled and filtered. The filtrate was concentrated in vacuum and the residue was purified by column chromatography (PE/EA =20:1) to provide tert-butyl 2- (5-chloro-3 -iodo- 1H-indazol- 1 -yl)acetate (3.7 g, 84.1%). |
84.1% | With potassium carbonate; In acetonitrile; for 16h;Reflux; | To a suspension of 5-chloro-3-iodo-lH-indazole (3.1 g, 11.2 mmol, 1.0 eq.) and potassium carbonate (3.1 g, 22.3 mmol, 2.0 eq.) in CH3CN (50 mL) was added tert-butyl bromoacetate (2.6 g, 13.4 mmol, 1.2 eq.) dropwise at r.t. The resulting mixture was heated under reflux for 16 h, then cooled and filtered. The filtrate was concentrated under vacuum and the residue was purified by column chromatography (PE/EA =20: 1) to provide tert-butyl 2-(5-chloro-3-iodo-lH-in .7 g, 84.1%). |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
60% | With tetrakis(triphenylphosphine) palladium(0); sodium carbonate; In 1,4-dioxane; water; at 120℃; for 0.666667h;Microwave irradiation; Inert atmosphere; | General procedure: Method a: A mixture of 3-iodoindazole (0.2 g, 0.82 mmol), 2 equivalents ofvinyl boronic acid pinacol ester (0.27 mL, 1.62 mmol), tetrakis triphenylphosphine palladium (52 mg,0.045 mmol), an aqueous solution of sodium carbonate 2N (2 mL) and 1,4-dioxane (7 mL), were placedin a microwave glass tube and purged with nitrogen. The closed tube was placed under microwaveirradiation to 120 C for 40 min. After irradiation was completed, the reaction was stopped by dilutionusing 50 mL of brine. The organic layer was extracted with ethylacetate (3 × 45 mL) and the combinedorganic layers were dried over anhydrous sodium sulfate. Removal of the solvent under vacuumafforded a brown oil crude residue. The oil was purified by column chromatography on silica gel(hexane/ethylacetate 7:3) to yield 89 mg of white crystalline plates. Yield: 75%. |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
With caesium carbonate; In N,N-dimethyl-formamide; at 68℃; for 18h;Inert atmosphere; | General procedure: A mixture of 6-chloro-3-iodo-1H-indazole (0.47 g, 1.69 mmol), methyl 4-(1-bromo-3-methylbutyl)benzoate (0.48 g, 1.69 mmol) and Cs2CO3 (0.66 g, 2.03 mmol) in DMF (12 mL) under N2 was heated in an oil bath at 68 C for 18 h. The reaction mixture was diluted with CH2Cl2. Filtration and concentration of the filtrate gave the crude product. Chromatography on silica gel (heptane to 10% EtOAc in heptane) gave a 7:2 mixture of the N1-alkylation product and the N2-alkylation product (yellow solid, 0.54g, 66% combined). |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
General procedure: The above mixture of the N1- and N2-alkylation isomers (0.42 g, 0.87 mmol) in THF/MeOH/H2O (4:1:1 v/v/v, 18 mL) was treated with LiOH aqueous solution (1 M in H2O, 3 mL, 3 mmol). The reaction mixture was stirred in an oil bath at 60C for 2 h. Hydrocholoric acid (1 M in H2O) was added to neutralize the mixture. Brine was added, and it was extracted with EtOAc thrice. The combined extracts were washed with brine and dried over Na2SO4. Filtration and concentration of the filtrate gave the crude acid product as yellowish solid, which contained 4-(1-(6-chloro-3-iodo-1H-indazol-1-yl)-3-methylbutyl)benzoic acid as the major component. |