Home Cart Sign in  
Chemical Structure| 3176-62-3 Chemical Structure| 3176-62-3
Chemical Structure| 3176-62-3

3-Methyl-1H-indazole

CAS No.: 3176-62-3

4.5 *For Research Use Only !

Cat. No.: A103713 Purity: 98%

Change View

Size Price

US Stock

Global Stock

In Stock
250mg łÇǶÊÊ Inquiry Inquiry
1g łËò¶ÊÊ Inquiry Inquiry
5g łÿó¶ÊÊ Inquiry Inquiry
10g łÇÊǶÊÊ Inquiry Inquiry
25g łËʧ¶ÊÊ Inquiry Inquiry
100g łďÊʶÊÊ Inquiry Inquiry

US Stock: ship in 0-1 business day
Global Stock: ship in 2 weeks

  • 250mg

    łÇǶÊÊ

  • 1g

    łËò¶ÊÊ

  • 5g

    łÿó¶ÊÊ

  • 10g

    łÇÊǶÊÊ

  • 25g

    łËʧ¶ÊÊ

  • 100g

    łďÊʶÊÊ

In Stock

- +

US Stock: ship in 0-1 business day
Global Stock: ship in 2 weeks

  • 1-2 Day Shipping
  • High Quality
  • Technical Support Online Technical Q&A
Product Citations

Product Citations

Johansson Joel ;

Abstract: As of today, Alzheimer’s disease is the leading cause of dementia among neurodegenerative disorders, affecting many millions of people worldwide. As the average life span of populations increase, more and more people succumb to the illness each year. Like other neurodegenerative disorders, Alzheimer’s disease can be attributed to the accumulation of protein aggregates in the brain. These amyloid-β peptides and tau proteins can presumably be detected in the brain many years before the onset of clinical symptoms. Development of fluorescent ligands, capable of binding to these neuropathological hallmarks and highlighting them, could serve as molecular diagnostic tools and facilitate an early diagnosis of the disease. The method could also be useful in studying disease progression and evaluating the effects of novel treatments. One such ligand is HS-259. The aim of this project was to synthetize different analogues of HS-259, and test their selectivity towards the aforementioned aggregates in brain tissue from an individual with Alzheimer’s disease. Staining of tissue samples with analogue solution enables visualization of aggregate sites through fluorescence imaging. In the end, five analogues were synthetized, albeit in relatively low overall yields. Synthetic methods included Suzuki-Miyara cross-couplings, Ullmann-type arylations and condensations. Liquid Chromatography-Mass Spectrometry (LC-MS) and Nuclear Magnetic Resonance (NMR) were used for analysis of the compounds. Two of the five analogues could be tested for staining of aggregates and assessed for photophysical characteristics, i.e. absorption- and emission spectra. One analogue stained both amyloid-β aggregates and some tau aggregates, whereas the other stained neither. Since only two analogues were tested and rendered inconsistent results, further studies are needed to assess the binding properties of HS-259 analogues in general.

Keywords: Alzheimer's disease ; neurodegenerative disorders ; protein aggregates ; molecular ligands ; amyloid-β ; Aβ ; amyloid-beta ; tau ; diagnosis ; HS-259 ; staining ; brain tissue ; Suzuki coupling ; Ullmann arylation ; condensation ; NMR ; nuclear magnetic resonance ; LC-MS ; liquid chromatography ; neuropathological hallmarks ; absorption spectra ; emission spectra ; synthesis ; plaques ; symptoms ; neuropathology ; thiophene-vinyl-benzothiazole ; TVBT ; ligand analogues ; N-arylation ; Knoevenagel ; preparative LC ; PBS ; phosphate buffered saline ; treatments ; AD ; mechanisms ; thiophene ; benzothiazolium ; fluorescence imaging ; bTVBT ; bi-thiophene-vinyl-benzothiazole ; detection ; Suzuki-Miyara

Purchased from AmBeed:

Alternative Products

Product Details of [ 3176-62-3 ]

CAS No. :3176-62-3
Formula : C8H8N2
M.W : 132.16
SMILES Code : CC1=N[NH]C2=CC=CC=C12
MDL No. :MFCD00601361
InChI Key :FWOPJXVQGMZKEP-UHFFFAOYSA-N
Pubchem ID :820804

Safety of [ 3176-62-3 ]

GHS Pictogram:
Signal Word:Warning
Hazard Statements:H302-H315-H317-H319-H335
Precautionary Statements:P261-P280-P305+P351+P338

Calculated chemistry of [ 3176-62-3 ] Show Less

Physicochemical Properties

Num. heavy atoms 10
Num. arom. heavy atoms 9
Fraction Csp3 0.12
Num. rotatable bonds 0
Num. H-bond acceptors 1.0
Num. H-bond donors 1.0
Molar Refractivity 41.06
TPSA ?

Topological Polar Surface Area: Calculated from
Ertl P. et al. 2000 J. Med. Chem.

28.68 Ų

Lipophilicity

Log Po/w (iLOGP)?

iLOGP: in-house physics-based method implemented from
Daina A et al. 2014 J. Chem. Inf. Model.

1.18
Log Po/w (XLOGP3)?

XLOGP3: Atomistic and knowledge-based method calculated by
XLOGP program, version 3.2.2, courtesy of CCBG, Shanghai Institute of Organic Chemistry

1.95
Log Po/w (WLOGP)?

WLOGP: Atomistic method implemented from
Wildman SA and Crippen GM. 1999 J. Chem. Inf. Model.

1.87
Log Po/w (MLOGP)?

MLOGP: Topological method implemented from
Moriguchi I. et al. 1992 Chem. Pharm. Bull.
Moriguchi I. et al. 1994 Chem. Pharm. Bull.
Lipinski PA. et al. 2001 Adv. Drug. Deliv. Rev.

1.45
Log Po/w (SILICOS-IT)?

SILICOS-IT: Hybrid fragmental/topological method calculated by
FILTER-IT program, version 1.0.2, courtesy of SILICOS-IT, http://www.silicos-it.com

2.53
Consensus Log Po/w?

Consensus Log Po/w: Average of all five predictions

1.8

Water Solubility

Log S (ESOL):?

ESOL: Topological method implemented from
Delaney JS. 2004 J. Chem. Inf. Model.

-2.55
Solubility 0.369 mg/ml ; 0.00279 mol/l
Class?

Solubility class: Log S scale
Insoluble < -10 < Poorly < -6 < Moderately < -4 < Soluble < -2 Very < 0 < Highly

Soluble
Log S (Ali)?

Ali: Topological method implemented from
Ali J. et al. 2012 J. Chem. Inf. Model.

-2.18
Solubility 0.879 mg/ml ; 0.00665 mol/l
Class?

Solubility class: Log S scale
Insoluble < -10 < Poorly < -6 < Moderately < -4 < Soluble < -2 Very < 0 < Highly

Soluble
Log S (SILICOS-IT)?

SILICOS-IT: Fragmental method calculated by
FILTER-IT program, version 1.0.2, courtesy of SILICOS-IT, http://www.silicos-it.com

-3.26
Solubility 0.0721 mg/ml ; 0.000546 mol/l
Class?

Solubility class: Log S scale
Insoluble < -10 < Poorly < -6 < Moderately < -4 < Soluble < -2 Very < 0 < Highly

Soluble

Pharmacokinetics

GI absorption?

Gatrointestinal absorption: according to the white of the BOILED-Egg

High
BBB permeant?

BBB permeation: according to the yolk of the BOILED-Egg

Yes
P-gp substrate?

P-glycoprotein substrate: SVM model built on 1033 molecules (training set)
and tested on 415 molecules (test set)
10-fold CV: ACC=0.72 / AUC=0.77
External: ACC=0.88 / AUC=0.94

No
CYP1A2 inhibitor?

Cytochrome P450 1A2 inhibitor: SVM model built on 9145 molecules (training set)
and tested on 3000 molecules (test set)
10-fold CV: ACC=0.83 / AUC=0.90
External: ACC=0.84 / AUC=0.91

Yes
CYP2C19 inhibitor?

Cytochrome P450 2C19 inhibitor: SVM model built on 9272 molecules (training set)
and tested on 3000 molecules (test set)
10-fold CV: ACC=0.80 / AUC=0.86
External: ACC=0.80 / AUC=0.87

No
CYP2C9 inhibitor?

Cytochrome P450 2C9 inhibitor: SVM model built on 5940 molecules (training set)
and tested on 2075 molecules (test set)
10-fold CV: ACC=0.78 / AUC=0.85
External: ACC=0.71 / AUC=0.81

No
CYP2D6 inhibitor?

Cytochrome P450 2D6 inhibitor: SVM model built on 3664 molecules (training set)
and tested on 1068 molecules (test set)
10-fold CV: ACC=0.79 / AUC=0.85
External: ACC=0.81 / AUC=0.87

No
CYP3A4 inhibitor?

Cytochrome P450 3A4 inhibitor: SVM model built on 7518 molecules (training set)
and tested on 2579 molecules (test set)
10-fold CV: ACC=0.77 / AUC=0.85
External: ACC=0.78 / AUC=0.86

No
Log Kp (skin permeation)?

Skin permeation: QSPR model implemented from
Potts RO and Guy RH. 1992 Pharm. Res.

-5.72 cm/s

Druglikeness

Lipinski?

Lipinski (Pfizer) filter: implemented from
Lipinski CA. et al. 2001 Adv. Drug Deliv. Rev.
MW ≤ 500
MLOGP ≤ 4.15
N or O ≤ 10
NH or OH ≤ 5

0.0
Ghose?

Ghose filter: implemented from
Ghose AK. et al. 1999 J. Comb. Chem.
160 ≤ MW ≤ 480
-0.4 ≤ WLOGP ≤ 5.6
40 ≤ MR ≤ 130
20 ≤ atoms ≤ 70

None
Veber?

Veber (GSK) filter: implemented from
Veber DF. et al. 2002 J. Med. Chem.
Rotatable bonds ≤ 10
TPSA ≤ 140

0.0
Egan?

Egan (Pharmacia) filter: implemented from
Egan WJ. et al. 2000 J. Med. Chem.
WLOGP ≤ 5.88
TPSA ≤ 131.6

0.0
Muegge?

Muegge (Bayer) filter: implemented from
Muegge I. et al. 2001 J. Med. Chem.
200 ≤ MW ≤ 600
-2 ≤ XLOGP ≤ 5
TPSA ≤ 150
Num. rings ≤ 7
Num. carbon > 4
Num. heteroatoms > 1
Num. rotatable bonds ≤ 15
H-bond acc. ≤ 10
H-bond don. ≤ 5

1.0
Bioavailability Score?

Abbott Bioavailability Score: Probability of F > 10% in rat
implemented from
Martin YC. 2005 J. Med. Chem.

0.55

Medicinal Chemistry

PAINS?

Pan Assay Interference Structures: implemented from
Baell JB. & Holloway GA. 2010 J. Med. Chem.

0.0 alert
Brenk?

Structural Alert: implemented from
Brenk R. et al. 2008 ChemMedChem

0.0 alert: heavy_metal
Leadlikeness?

Leadlikeness: implemented from
Teague SJ. 1999 Angew. Chem. Int. Ed.
250 ≤ MW ≤ 350
XLOGP ≤ 3.5
Num. rotatable bonds ≤ 7

No; 1 violation:MW<1.0
Synthetic accessibility?

Synthetic accessibility score: from 1 (very easy) to 10 (very difficult)
based on 1024 fragmental contributions (FP2) modulated by size and complexity penaties,
trained on 12'782'590 molecules and tested on 40 external molecules (r2 = 0.94)

1.21
 

Historical Records

Categories

Related Parent Nucleus of
[ 3176-62-3 ]

Indazoles

Chemical Structure| 4498-74-2

A327582 [4498-74-2]

3-Benzyl-1H-indazole

Similarity: 0.98

Chemical Structure| 1776-37-0

A257510 [1776-37-0]

5-Methyl-1H-indazole

Similarity: 0.89

Chemical Structure| 3176-66-7

A215869 [3176-66-7]

7-Methyl-1H-indazole

Similarity: 0.88

Chemical Structure| 81115-45-9

A327742 [81115-45-9]

5-Amino-6-methyl-1H-indazole

Similarity: 0.86

Chemical Structure| 5757-85-7

A173392 [5757-85-7]

1,3-Dimethyl-1H-indazol-5-amine

Similarity: 0.86