Home Cart Sign in  
Chemical Structure| 27710-82-3 Chemical Structure| 27710-82-3

Structure of 27710-82-3

Chemical Structure| 27710-82-3

*Storage: {[sel_prStorage]}

*Shipping: {[sel_prShipping]}

,{[proInfo.pro_purity]}

4.5 *For Research Use Only !

{[proInfo.pro_purity]}
Cat. No.: {[proInfo.prAm]} Purity: {[proInfo.pro_purity]}

Change View

Size Price VIP Price

US Stock

Global Stock

In Stock
{[ item.pr_size ]} Inquiry {[ getRatePrice(item.pr_usd,item.pr_rate,item.mem_rate,item.pr_is_large_size_no_price, item.vip_usd) ]}

US Stock: ship in 0-1 business day
Global Stock: ship in 5-7 days

  • {[ item.pr_size ]}

In Stock

- +

Please Login or Create an Account to: See VIP prices and availability

US Stock: ship in 0-1 business day
Global Stock: ship in 2 weeks

  • 1-2 Day Shipping
  • High Quality
  • Technical Support
Product Citations

Alternative Products

Product Details of [ 27710-82-3 ]

CAS No. :27710-82-3
Formula : C23H28Br2NP
M.W : 509.26
SMILES Code : CN(CCC[P+](C1=CC=CC=C1)(C2=CC=CC=C2)C3=CC=CC=C3)C.[H]Br.[Br-]
MDL No. :MFCD00077740
InChI Key :NEQVFHFOWYYPBS-UHFFFAOYSA-M
Pubchem ID :23651404

Safety of [ 27710-82-3 ]

GHS Pictogram:
Signal Word:Warning
Hazard Statements:H315-H319-H335
Precautionary Statements:P261-P305+P351+P338

Computational Chemistry of [ 27710-82-3 ] Show Less

Physicochemical Properties

Num. heavy atoms 27
Num. arom. heavy atoms 18
Fraction Csp3 0.22
Num. rotatable bonds 7
Num. H-bond acceptors 1.0
Num. H-bond donors 0.0
Molar Refractivity 132.1
TPSA ?

Topological Polar Surface Area: Calculated from
Ertl P. et al. 2000 J. Med. Chem.

16.83 Ų

Lipophilicity

Log Po/w (iLOGP)?

iLOGP: in-house physics-based method implemented from
Daina A et al. 2014 J. Chem. Inf. Model.

0.0
Log Po/w (XLOGP3)?

XLOGP3: Atomistic and knowledge-based method calculated by
XLOGP program, version 3.2.2, courtesy of CCBG, Shanghai Institute of Organic Chemistry

6.96
Log Po/w (WLOGP)?

WLOGP: Atomistic method implemented from
Wildman SA and Crippen GM. 1999 J. Chem. Inf. Model.

1.89
Log Po/w (MLOGP)?

MLOGP: Topological method implemented from
Moriguchi I. et al. 1992 Chem. Pharm. Bull.
Moriguchi I. et al. 1994 Chem. Pharm. Bull.
Lipinski PA. et al. 2001 Adv. Drug. Deliv. Rev.

5.83
Log Po/w (SILICOS-IT)?

SILICOS-IT: Hybrid fragmental/topological method calculated by
FILTER-IT program, version 1.0.2, courtesy of SILICOS-IT, http://www.silicos-it.com

5.01
Consensus Log Po/w?

Consensus Log Po/w: Average of all five predictions

3.94

Water Solubility

Log S (ESOL):?

ESOL: Topological method implemented from
Delaney JS. 2004 J. Chem. Inf. Model.

-7.41
Solubility 0.0000197 mg/ml ; 0.0000000386 mol/l
Class?

Solubility class: Log S scale
Insoluble < -10 < Poorly < -6 < Moderately < -4 < Soluble < -2 Very < 0 < Highly

Poorly soluble
Log S (Ali)?

Ali: Topological method implemented from
Ali J. et al. 2012 J. Chem. Inf. Model.

-7.13
Solubility 0.000038 mg/ml ; 0.0000000746 mol/l
Class?

Solubility class: Log S scale
Insoluble < -10 < Poorly < -6 < Moderately < -4 < Soluble < -2 Very < 0 < Highly

Poorly soluble
Log S (SILICOS-IT)?

SILICOS-IT: Fragmental method calculated by
FILTER-IT program, version 1.0.2, courtesy of SILICOS-IT, http://www.silicos-it.com

-8.83
Solubility 0.000000752 mg/ml ; 0.0000000015 mol/l
Class?

Solubility class: Log S scale
Insoluble < -10 < Poorly < -6 < Moderately < -4 < Soluble < -2 Very < 0 < Highly

Poorly soluble

Pharmacokinetics

GI absorption?

Gatrointestinal absorption: according to the white of the BOILED-Egg

High
BBB permeant?

BBB permeation: according to the yolk of the BOILED-Egg

Yes
P-gp substrate?

P-glycoprotein substrate: SVM model built on 1033 molecules (training set)
and tested on 415 molecules (test set)
10-fold CV: ACC=0.72 / AUC=0.77
External: ACC=0.88 / AUC=0.94

Yes
CYP1A2 inhibitor?

Cytochrome P450 1A2 inhibitor: SVM model built on 9145 molecules (training set)
and tested on 3000 molecules (test set)
10-fold CV: ACC=0.83 / AUC=0.90
External: ACC=0.84 / AUC=0.91

No
CYP2C19 inhibitor?

Cytochrome P450 2C19 inhibitor: SVM model built on 9272 molecules (training set)
and tested on 3000 molecules (test set)
10-fold CV: ACC=0.80 / AUC=0.86
External: ACC=0.80 / AUC=0.87

No
CYP2C9 inhibitor?

Cytochrome P450 2C9 inhibitor: SVM model built on 5940 molecules (training set)
and tested on 2075 molecules (test set)
10-fold CV: ACC=0.78 / AUC=0.85
External: ACC=0.71 / AUC=0.81

No
CYP2D6 inhibitor?

Cytochrome P450 2D6 inhibitor: SVM model built on 3664 molecules (training set)
and tested on 1068 molecules (test set)
10-fold CV: ACC=0.79 / AUC=0.85
External: ACC=0.81 / AUC=0.87

Yes
CYP3A4 inhibitor?

Cytochrome P450 3A4 inhibitor: SVM model built on 7518 molecules (training set)
and tested on 2579 molecules (test set)
10-fold CV: ACC=0.77 / AUC=0.85
External: ACC=0.78 / AUC=0.86

No
Log Kp (skin permeation)?

Skin permeation: QSPR model implemented from
Potts RO and Guy RH. 1992 Pharm. Res.

-4.46 cm/s

Druglikeness

Lipinski?

Lipinski (Pfizer) filter: implemented from
Lipinski CA. et al. 2001 Adv. Drug Deliv. Rev.
MW ≤ 500
MLOGP ≤ 4.15
N or O ≤ 10
NH or OH ≤ 5

2.0
Ghose?

Ghose filter: implemented from
Ghose AK. et al. 1999 J. Comb. Chem.
160 ≤ MW ≤ 480
-0.4 ≤ WLOGP ≤ 5.6
40 ≤ MR ≤ 130
20 ≤ atoms ≤ 70

None
Veber?

Veber (GSK) filter: implemented from
Veber DF. et al. 2002 J. Med. Chem.
Rotatable bonds ≤ 10
TPSA ≤ 140

0.0
Egan?

Egan (Pharmacia) filter: implemented from
Egan WJ. et al. 2000 J. Med. Chem.
WLOGP ≤ 5.88
TPSA ≤ 131.6

0.0
Muegge?

Muegge (Bayer) filter: implemented from
Muegge I. et al. 2001 J. Med. Chem.
200 ≤ MW ≤ 600
-2 ≤ XLOGP ≤ 5
TPSA ≤ 150
Num. rings ≤ 7
Num. carbon > 4
Num. heteroatoms > 1
Num. rotatable bonds ≤ 15
H-bond acc. ≤ 10
H-bond don. ≤ 5

1.0
Bioavailability Score?

Abbott Bioavailability Score: Probability of F > 10% in rat
implemented from
Martin YC. 2005 J. Med. Chem.

0.17

Medicinal Chemistry

PAINS?

Pan Assay Interference Structures: implemented from
Baell JB. & Holloway GA. 2010 J. Med. Chem.

0.0 alert
Brenk?

Structural Alert: implemented from
Brenk R. et al. 2008 ChemMedChem

1.0 alert: heavy_metal
Leadlikeness?

Leadlikeness: implemented from
Teague SJ. 1999 Angew. Chem. Int. Ed.
250 ≤ MW ≤ 350
XLOGP ≤ 3.5
Num. rotatable bonds ≤ 7

No; 1 violation:MW<2.0
Synthetic accessibility?

Synthetic accessibility score: from 1 (very easy) to 10 (very difficult)
based on 1024 fragmental contributions (FP2) modulated by size and complexity penaties,
trained on 12'782'590 molecules and tested on 40 external molecules (r2 = 0.94)

4.88

Application In Synthesis of [ 27710-82-3 ]

* All experimental methods are cited from the reference, please refer to the original source for details. We do not guarantee the accuracy of the content in the reference.

  • Upstream synthesis route of [ 27710-82-3 ]
  • Downstream synthetic route of [ 27710-82-3 ]

[ 27710-82-3 ] Synthesis Path-Upstream   1~1

  • 1
  • [ 3607-17-8 ]
  • [ 124-40-3 ]
  • [ 27710-82-3 ]
YieldReaction ConditionsOperation in experiment
82% at 20 - 100℃; Sealed tube Preparation of (3-(Dimethylamino)propyl)triphenylphosphonium bromide hydrobromide salt. To a suspension of 3-bromopropyltriphenylphosphonium bromide (1.0 g, 2.1 mmol) in ethanol (5 mL) was added a solution of 40percent dimethylamine in water (3 mL) at room temperature. The mixture was stirred and heated at 100 °C for 30 min in a sealed microwave tube. After the reaction mixture was concentrated under reduced pressure, the solid residue was recrystallized in acetonitrile to afford (3- (dimethylamino)propyl)triphenylphosphonium bromide hydrobromide salt (0.90 g, 82percent) as a white solid, and was used in the following step. ESI MS m/z 348.3(Ph3PCH2CH2CH2NMe2)+.
74.2%
Stage #1: at 20℃; for 1.5 h; Heating / reflux
Stage #2: With Acetyl bromide In ethanol at 0 - 25℃;
Example 4; Synthesis of the Wittig Reagent 3-dimethylaminopropyltriphenylphosphonium Bromide *HBr (Olo-IM4) To a stirred suspension of 3-bromopropyltriphenylphosphonium bromide (Olo-IM3) (420 g, 0.90 mol) in absolute ethanol (664 g) a solution of dimethylamine in absolute ethanol (368 g, 2.69 mol, assay: 33percent) was added slowly within 30 minutes at room temperature. After complete addition the suspension was stirred 1 hour at reflux whereupon a solution was obtained. The solution was cooled to a temperature of 0-10° C. and acetyl bromide (202.7 g, 1.65 mol) was added dropwise until the pH was 1, and the resulting suspension was allowed to warm to 20-25° C. After the white suspension was filtered the wet product washed with absolute ethanol (237 g) and then dried under vacuum (15 h, 70° C.) to give 3-dimethylaminopropyltriphenylphosphonium bromide*HBr (Olo-IM4) as a white solid (yield: 471.2 g, 0.77 mol, 85.1percent; HPLC assay: 83.2percent, HPLC purity: 98.72percent). The crude material (460 g, 0.75 mol; assay: 83.2percent) was further purified by suspending it in absolute ethanol (395 g) and stirring at reflux temperature. After addition of further absolute ethanol (435 g) all material was dissolved and the solution was allowed to cool to room temperature, with seeding at 69° C. to initiate crystallization. After 4 hours stirring at room temperature the product was filtered off, washed with ethanol (140 g) and then dried under vacuum (15 h, 70° C.) to give 3-dimethylaminopropyltriphenylphosphonium bromide*HBr (Olo-IM4) as a crystalline white solid (yield: 333.7 g, 0.66 mol, 87.2percent; HPLC assay >99.9percent, HPLC purity: 99.85percent, overall yield: 74.2percent).
References: [1] Patent: WO2012/79017, 2012, A1, . Location in patent: Page/Page column 68.
[2] Patent: US2007/232814, 2007, A1, . Location in patent: Page/Page column 24.
 

Historical Records

Technical Information

Categories