There will be a HazMat fee per item when shipping a dangerous goods. The HazMat fee will be charged to your UPS/DHL/FedEx collect account or added to the invoice unless the package is shipped via Ground service. Ship by air in Excepted Quantity (each bottle), which is up to 1g/1mL for class 6.1 packing group I or II, and up to 25g/25ml for all other HazMat items.
Type | HazMat fee for 500 gram (Estimated) |
Excepted Quantity | USD 0.00 |
Limited Quantity | USD 15-60 |
Inaccessible (Haz class 6.1), Domestic | USD 80+ |
Inaccessible (Haz class 6.1), International | USD 150+ |
Accessible (Haz class 3, 4, 5 or 8), Domestic | USD 100+ |
Accessible (Haz class 3, 4, 5 or 8), International | USD 200+ |
Structure of 2713-33-9
*Storage: {[sel_prStorage]}
*Shipping: {[sel_prShipping]}
The BI-3802 was designed by Boehringer Ingelheim and could be obtained free of charge through the Boehringer Ingelheim open innovation portal opnMe.com, associated with its negative control.
4.5
*For Research Use Only !
Change View
Size | Price | VIP Price | US Stock |
Global Stock |
In Stock | ||
{[ item.pr_size ]} |
Inquiry
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]} {[ getRatePrice(item.pr_usd,item.pr_rate,1,item.pr_is_large_size_no_price, item.discount_usd) ]} {[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]} |
Inquiry {[ getRatePrice(item.pr_usd,item.pr_rate,item.mem_rate,item.pr_is_large_size_no_price, item.vip_usd) ]} | Inquiry {[ item.pr_usastock ]} In Stock Inquiry - | {[ item.pr_chinastock ]} {[ item.pr_remark ]} In Stock 1-2 weeks - Inquiry - | Login | - + | Inquiry |
Please Login or Create an Account to: See VIP prices and availability
US Stock: ship in 0-1 business day
Global Stock: ship in 5-7 days
1-2weeks
Inquiry
{[ getRatePrice(item.pr_usd,item.pr_rate,item.mem_rate,item.pr_is_large_size_no_price, item.vip_usd) ]}
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]}
{[ getRatePrice(item.pr_usd,1,item.mem_rate,item.pr_is_large_size_no_price, item.pr_usd) ]}
Inquiry
{[ getRatePrice(item.pr_usd,item.pr_rate,1,item.pr_is_large_size_no_price, item.vip_usd) ]}
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]}
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]}
In Stock
- +
Please Login or Create an Account to: See VIP prices and availability
US Stock: ship in 0-1 business day
Global Stock: ship in 2 weeks
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Hwang, Dong-Jin ; Yang, Chuanhe ; Wang, Yinan ; Kelso, Hannah ; Pochampally, Satyanarayana ; Pfeffer, Lawrence M , et al.
Abstract: Background/Objectives: Human glioblastoma (GBM) is the most aggressive brain cancer in adults and a highly treatment-refractory malignancy. The overall prognosis for the GBM is extremely poor, with a median survival of 12–14 months after initial diagnosis. Many GBM patients initially respond to the DNA alkylating agent temozolomide (TMZ), but patients often become therapy-resistant, and tumors recur. We previously reported that treatment with PFI-3, which is a small molecule inhibitor of the bromodomain of the BRG1 subunit of the SW1/SNF chromatin remodeling complex, enhanced the sensitivity of GBM cells to TMZ in vitro and in vivo GBM animal models. Our general objective was to perform an SAR study of new diphenyl PFI-3 analogs. Methods: New structural analogs of PFI-3 were developed, synthesized, and tested for their ability to enhance TMZ-induced GBM cell death by ELISA. Results: Following on the enhanced activity of compounds 2a and 2b, new diphenyl PFI-3 analogs with specific structural adjustments were made to better understand the structural requirements to optimize function. Additionally, several new structurally different candidates (e.g., 4a, 4b, and 5) showed much better efficacy in sensitizing GBM cells to TMZ-induced GBM cell death. Conclusions: Four series of PFI-3 analogs (2, 3, 4, and 5) were designed, synthesized, and tested for the ability to sensitize GBM cells to TMZ-induced cell death. Series 2 optimized the A-ring and R-isomer chirality. Series 3 used a 5-membered linker with weak activity. Series 4’s di-phenyl urea compounds showed better bromodomain inhibition. Series 5’s methoxyphenyl-B-ring analogs were exceptionally strong inhibitors.
Show More >
Keywords: bromodomain ; glioblastoma (GBM) ; therapeutic enhancing drug (TED) ; anti-GBM activity ; structure-activity relationship (SAR) ; PFI-3 analog ; temozolomide (TMZ)
Show More >
CAS No. : | 2713-33-9 |
Formula : | C6H4F2O |
M.W : | 130.09 |
SMILES Code : | OC1=CC=C(F)C(F)=C1 |
MDL No. : | MFCD00010315 |
InChI Key : | BNPWVUJOPCGHIK-UHFFFAOYSA-N |
Pubchem ID : | 75927 |
GHS Pictogram: |
![]() ![]() ![]() |
Signal Word: | Danger |
Hazard Statements: | H228-H302+H312-H314 |
Precautionary Statements: | P210-P280-P305+P351+P338-P310 |
Class: | 8(4.1) |
UN#: | 2921 |
Packing Group: | Ⅱ |
Num. heavy atoms | 9 |
Num. arom. heavy atoms | 6 |
Fraction Csp3 | 0.0 |
Num. rotatable bonds | 0 |
Num. H-bond acceptors | 3.0 |
Num. H-bond donors | 1.0 |
Molar Refractivity | 28.38 |
TPSA ? Topological Polar Surface Area: Calculated from |
20.23 Ų |
Log Po/w (iLOGP)? iLOGP: in-house physics-based method implemented from |
1.39 |
Log Po/w (XLOGP3)? XLOGP3: Atomistic and knowledge-based method calculated by |
2.06 |
Log Po/w (WLOGP)? WLOGP: Atomistic method implemented from |
2.51 |
Log Po/w (MLOGP)? MLOGP: Topological method implemented from |
2.34 |
Log Po/w (SILICOS-IT)? SILICOS-IT: Hybrid fragmental/topological method calculated by |
2.23 |
Consensus Log Po/w? Consensus Log Po/w: Average of all five predictions |
2.11 |
Log S (ESOL):? ESOL: Topological method implemented from |
-2.44 |
Solubility | 0.475 mg/ml ; 0.00365 mol/l |
Class? Solubility class: Log S scale |
Soluble |
Log S (Ali)? Ali: Topological method implemented from |
-2.11 |
Solubility | 1.0 mg/ml ; 0.0077 mol/l |
Class? Solubility class: Log S scale |
Soluble |
Log S (SILICOS-IT)? SILICOS-IT: Fragmental method calculated by |
-2.34 |
Solubility | 0.591 mg/ml ; 0.00454 mol/l |
Class? Solubility class: Log S scale |
Soluble |
GI absorption? Gatrointestinal absorption: according to the white of the BOILED-Egg |
High |
BBB permeant? BBB permeation: according to the yolk of the BOILED-Egg |
Yes |
P-gp substrate? P-glycoprotein substrate: SVM model built on 1033 molecules (training set) |
No |
CYP1A2 inhibitor? Cytochrome P450 1A2 inhibitor: SVM model built on 9145 molecules (training set) |
No |
CYP2C19 inhibitor? Cytochrome P450 2C19 inhibitor: SVM model built on 9272 molecules (training set) |
No |
CYP2C9 inhibitor? Cytochrome P450 2C9 inhibitor: SVM model built on 5940 molecules (training set) |
No |
CYP2D6 inhibitor? Cytochrome P450 2D6 inhibitor: SVM model built on 3664 molecules (training set) |
No |
CYP3A4 inhibitor? Cytochrome P450 3A4 inhibitor: SVM model built on 7518 molecules (training set) |
No |
Log Kp (skin permeation)? Skin permeation: QSPR model implemented from |
-5.63 cm/s |
Lipinski? Lipinski (Pfizer) filter: implemented from |
0.0 |
Ghose? Ghose filter: implemented from |
None |
Veber? Veber (GSK) filter: implemented from |
0.0 |
Egan? Egan (Pharmacia) filter: implemented from |
0.0 |
Muegge? Muegge (Bayer) filter: implemented from |
2.0 |
Bioavailability Score? Abbott Bioavailability Score: Probability of F > 10% in rat |
0.55 |
PAINS? Pan Assay Interference Structures: implemented from |
0.0 alert |
Brenk? Structural Alert: implemented from |
0.0 alert: heavy_metal |
Leadlikeness? Leadlikeness: implemented from |
No; 1 violation:MW<1.0 |
Synthetic accessibility? Synthetic accessibility score: from 1 (very easy) to 10 (very difficult) |
1.06 |
* All experimental methods are cited from the reference, please refer to the original source for details. We do not guarantee the accuracy of the content in the reference.
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
83% | With potassium carbonate; potassium iodide; In N,N-dimethyl-formamide; at 130℃; for 2.5h; | Take compound XIII-2 (833mg, 3.07mmol) and dissolve it in N, N-dimethylformamide (8mL, 0.38M).2,4-difluorophenol (624 mg, 4.8 mmol) was added sequentially,Potassium carbonate (829mg, 6mmol),Potassium iodide (132mg, 0.8mmol),The temperature was raised to 130 C.After 2.5 hours of reaction,TLC monitors the end of the reaction.Reduce the reaction solution to room temperature.Add water (80mL),Ethyl acetate extraction (10mL x 5),Combined organic phases,Wash with saturated brine (20mL x 2),Dry over anhydrous sodium sulfate.The solvent was distilled off under reduced pressure,The residue was purified by column chromatography (eluent: petroleum ether / ethyl acetate = 50/1),Compound XIII-3 was obtained (yellow oil, 818 mg, yield 83%). |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
70% | With di-isopropyl azodicarboxylate; triphenylphosphine; In tetrahydrofuran; at 60℃; for 48h; | To an ice-cooled solution of 3,4-difluorophenol (0.250 g, 1.92 mmol), tert-butyl (3R)-3- hydroxypyrrolidine-1-carboxylate (359 mg, 1.92 mmol) and triphenylphosphine (553 mg, 2.11 mmol) in tetrahydrofuran (4.80 mL) at 25 C was added diisopropyl azodicarboxylate (414 µL, 2.11 mmol) dropwise. The reaction mixture was stirred at 60 C for 48 h, then concentrated under reduced pressure. The crude oil was diluted with diethyl ether (10 mL) and then 1 M aqueous sodium hydroxide (10 mL) was added. The aqueous layer was extracted with diethyl ether (10 mL x 2). The combined organic layers were dried over magnesium sulfate, filtered and concentrated in vacuo. The crude material was purified via column chromatography (ISCO, 24 g silica gel, 0-20% ethyl acetate in hexanes over 20 min gradient) to give tert-butyl (3S)-3-(3,4-difluorophenoxy)pyrrolidine-1-carboxylate (400 mg, 1.33 mmol, 70%) as a yellow solid.1H NMR (300 MHz, Chloroform-d) d 7.08 (dt, J = 10.2, 9.1 Hz, 1H), 6.71 (ddd, J = 11.9, 6.6, 3.0 Hz, 1H), 6.58 (dtd, J = 9.2, 3.2, 1.8 Hz, 1H), 4.80 (dq, J = 6.1, 2.5 Hz, 1H), 3.68- 3.41 (m, 4H), 2.12 (dtd, J = 18.1, 13.4, 9.8 Hz, 2H), 1.48 (s, 9H). |