There will be a HazMat fee per item when shipping a dangerous goods. The HazMat fee will be charged to your UPS/DHL/FedEx collect account or added to the invoice unless the package is shipped via Ground service. Ship by air in Excepted Quantity (each bottle), which is up to 1g/1mL for class 6.1 packing group I or II, and up to 25g/25ml for all other HazMat items.
Type | HazMat fee for 500 gram (Estimated) |
Excepted Quantity | USD 0.00 |
Limited Quantity | USD 15-60 |
Inaccessible (Haz class 6.1), Domestic | USD 80+ |
Inaccessible (Haz class 6.1), International | USD 150+ |
Accessible (Haz class 3, 4, 5 or 8), Domestic | USD 100+ |
Accessible (Haz class 3, 4, 5 or 8), International | USD 200+ |
Structure of 204688-60-8
*Storage: {[sel_prStorage]}
*Shipping: {[sel_prShipping]}
The BI-3802 was designed by Boehringer Ingelheim and could be obtained free of charge through the Boehringer Ingelheim open innovation portal opnMe.com, associated with its negative control.
4.5
*For Research Use Only !
Change View
Size | Price | VIP Price | US Stock |
Global Stock |
In Stock | ||
{[ item.pr_size ]} |
Inquiry
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]} {[ getRatePrice(item.pr_usd,item.pr_rate,1,item.pr_is_large_size_no_price, item.discount_usd) ]} {[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]} |
Inquiry {[ getRatePrice(item.pr_usd,item.pr_rate,item.mem_rate,item.pr_is_large_size_no_price, item.vip_usd) ]} | Inquiry {[ item.pr_usastock ]} In Stock Inquiry - | {[ item.pr_chinastock ]} {[ item.pr_remark ]} In Stock 1-2 weeks - Inquiry - | Login | - + | Inquiry |
Please Login or Create an Account to: See VIP prices and availability
US Stock: ship in 0-1 business day
Global Stock: ship in 5-7 days
1-2weeks
Inquiry
{[ getRatePrice(item.pr_usd,item.pr_rate,item.mem_rate,item.pr_is_large_size_no_price, item.vip_usd) ]}
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]}
{[ getRatePrice(item.pr_usd,1,item.mem_rate,item.pr_is_large_size_no_price, item.pr_usd) ]}
Inquiry
{[ getRatePrice(item.pr_usd,item.pr_rate,1,item.pr_is_large_size_no_price, item.vip_usd) ]}
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]}
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]}
In Stock
- +
Please Login or Create an Account to: See VIP prices and availability
US Stock: ship in 0-1 business day
Global Stock: ship in 2 weeks
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
CAS No. : | 204688-60-8 |
Formula : | C11H19NO4 |
M.W : | 229.27 |
SMILES Code : | O=C(O)C[C@@H]1CN(C(OC(C)(C)C)=O)CC1 |
MDL No. : | MFCD05861547 |
InChI Key : | SKEXQIJIXQSFRX-MRVPVSSYSA-N |
Pubchem ID : | 1502099 |
GHS Pictogram: |
![]() ![]() |
Signal Word: | Danger |
Hazard Statements: | H301-H410 |
Precautionary Statements: | P273-P301+P310-P305+P351+P338 |
Class: | 6.1 |
UN#: | 2811 |
Packing Group: | Ⅲ |
Num. heavy atoms | 16 |
Num. arom. heavy atoms | 0 |
Fraction Csp3 | 0.82 |
Num. rotatable bonds | 5 |
Num. H-bond acceptors | 4.0 |
Num. H-bond donors | 1.0 |
Molar Refractivity | 63.17 |
TPSA ? Topological Polar Surface Area: Calculated from |
66.84 Ų |
Log Po/w (iLOGP)? iLOGP: in-house physics-based method implemented from |
2.1 |
Log Po/w (XLOGP3)? XLOGP3: Atomistic and knowledge-based method calculated by |
1.0 |
Log Po/w (WLOGP)? WLOGP: Atomistic method implemented from |
1.34 |
Log Po/w (MLOGP)? MLOGP: Topological method implemented from |
1.03 |
Log Po/w (SILICOS-IT)? SILICOS-IT: Hybrid fragmental/topological method calculated by |
0.6 |
Consensus Log Po/w? Consensus Log Po/w: Average of all five predictions |
1.21 |
Log S (ESOL):? ESOL: Topological method implemented from |
-1.56 |
Solubility | 6.29 mg/ml ; 0.0274 mol/l |
Class? Solubility class: Log S scale |
Very soluble |
Log S (Ali)? Ali: Topological method implemented from |
-1.99 |
Solubility | 2.33 mg/ml ; 0.0102 mol/l |
Class? Solubility class: Log S scale |
Very soluble |
Log S (SILICOS-IT)? SILICOS-IT: Fragmental method calculated by |
-0.78 |
Solubility | 38.0 mg/ml ; 0.166 mol/l |
Class? Solubility class: Log S scale |
Soluble |
GI absorption? Gatrointestinal absorption: according to the white of the BOILED-Egg |
High |
BBB permeant? BBB permeation: according to the yolk of the BOILED-Egg |
Yes |
P-gp substrate? P-glycoprotein substrate: SVM model built on 1033 molecules (training set) |
No |
CYP1A2 inhibitor? Cytochrome P450 1A2 inhibitor: SVM model built on 9145 molecules (training set) |
No |
CYP2C19 inhibitor? Cytochrome P450 2C19 inhibitor: SVM model built on 9272 molecules (training set) |
No |
CYP2C9 inhibitor? Cytochrome P450 2C9 inhibitor: SVM model built on 5940 molecules (training set) |
No |
CYP2D6 inhibitor? Cytochrome P450 2D6 inhibitor: SVM model built on 3664 molecules (training set) |
No |
CYP3A4 inhibitor? Cytochrome P450 3A4 inhibitor: SVM model built on 7518 molecules (training set) |
No |
Log Kp (skin permeation)? Skin permeation: QSPR model implemented from |
-6.99 cm/s |
Lipinski? Lipinski (Pfizer) filter: implemented from |
0.0 |
Ghose? Ghose filter: implemented from |
None |
Veber? Veber (GSK) filter: implemented from |
0.0 |
Egan? Egan (Pharmacia) filter: implemented from |
0.0 |
Muegge? Muegge (Bayer) filter: implemented from |
0.0 |
Bioavailability Score? Abbott Bioavailability Score: Probability of F > 10% in rat |
0.56 |
PAINS? Pan Assay Interference Structures: implemented from |
0.0 alert |
Brenk? Structural Alert: implemented from |
0.0 alert: heavy_metal |
Leadlikeness? Leadlikeness: implemented from |
No; 1 violation:MW<1.0 |
Synthetic accessibility? Synthetic accessibility score: from 1 (very easy) to 10 (very difficult) |
2.59 |
* All experimental methods are cited from the reference, please refer to the original source for details. We do not guarantee the accuracy of the content in the reference.
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
With sodium hydroxide; trifluoroacetic acid; In 1,4-dioxane; dichloromethane; | b) A solution of 4.95 g of the preceding step product in 50 ml of dichloromethane and 25 ml of trifluoroacetic acid is stirred at room temperature for 3 h. and concentrated. The residue is dissolved in 40 ml of dioxan and 40 ml of 1N NaOH, treated at room temperature with 4.3 g of di-tert-butyl dicarbonate in 40 ml of dioxan and stirred for 1.5 h. The reaction mixture is diluted with ether, the organic phase is washed with 1N NaOH and the aqueous phase is acidified with 3N HCl. Extraction of the aqueous phase with ether, washing, drying and concentration of the ether phase gives 0.72 g of tert-butyl(R)-3-carboxymethyl-pyrrolidine-1-carboxylate. |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
(R)-methyl 2-(pyrrolidin-3-yl)acetate hydrochloride; <strong>[204688-60-8](R)-2-(1-(tert-butoxycarbonyl)pyrrolidin-3-yl)acetic acid</strong> (5.0 g, 21.81 mmol) in 4N HCl in dioxane (50 mL) was stirred at ambient temperature for 20 hours. The mixture was evaporated, coevaporated with dioxane (3×30 mL) and dried under high vacuum to give a yellow oil.This was dissolved in methanol (50 mL) at 10 C. and the solution saturated with HCl gas. The reaction mixture was then allowed to warm to ambient temperature and evaporated. The residue was co-evaporated with methanol (2×30 mL) and toluene (3×30 mL) and dried under high vacuum to give a yellow oil (4.0 g).1H NMR (400.13 MHz, DMSO-d6) delta 1.52-1.57 (1H, m), 2.063-2.13 (1H, m), 2.47-2.59 (3H, am), 2.7-2.8 (1H, m), 3.03-3.12 (1H, m), 3.14-3.25 (1H, m), 3.27-3.48 (3H, m), 3.61 (3H, s), 9.42 (2H, s) |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
In N,N-dimethyl-formamide; at 23℃; for 1h; | (R)-2-(1-(tert-Butoxycarbonyl)pyrrolidin-3-yl)acetic acid (500 mg, 2.18 mmol), HATU (995 mg, 2.62 mmol) and cyclopropylamine (0.181 mL, 2.62 mmol) were stirred in DMF (10 mL) at 23 C. for 1 h. The solvent was evaporated. The residue was dissolved in EtOAc and washed with 5% aqueous KHSO4, saturated aqueous NaHCO3, brine and dried over anhydrous Na2SO4. The solvent was evaporated. The product was then dissolved in Hydrogen chloride (10.90 mL, 10.90 mmol) (1M/AcOH) and stirred at 23 C. for 3-4 h. The solvent was evaporated and the product was dried under vacuum overnight. The product was used directly for the next step. Yield: 400 mg (90%). |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
100% | Borane-THF complex (3.90 kg or L of 1 M in THF, mol) was added slowly to a stirred solution of (R)-2-(1-(terf-butoxycarbonyl)pyrrolidine-3-yl)acetic acid (683 g, 3.03 mol) in THF (2.5 kg), kept under nitrogen gas, and using a water bath to keep the temperature between 23 and 28 C. The addition took 1.75 h. Stirring at 25 C was continued for 1 h, after which time GC analysis indicated complete reaction. The reaction mixture was cooled to <10 C and maintained below 25 C as 10% aqueous sodium hydroxide (1.22 kg) was slowly added. The addition took 40 min. The mixture was stirred 1 h at 25 C, and then combined with 1 :1 (v/v) heptane/ethyl acetate (7 L). The mixture was stirred for 15 min and allowed to separate into phases (1 h). The organic phase was withdrawn, and the aqueous phase was combined with a second 7 L portion of 1 :1 heptane/ethyl acetate. This was stirred for 15 min and allowed to separate into phases (20 min). The organic phase was again withdrawn, and the combined organic phases were washed with saturate aqueous sodium chloride (4.16 kg), using 15 min of mixing and 1 h of settling time. The organic phase was combined with silica gel (140 g) and stirred 1 h. The anhydrous sodium sulfate (700 g) was added, and the mixture was stirred for 1.5 h. The mixture was filtered, and the filter cake was washed with 1 :1 heptane/ethyl acetate (2 L). The filtrate was concentrated under vacuum at <40 C for 6 h. The resulting oil weighed 670 g (103% yield) and contains traces of heptane, but is otherwise identical to previously prepared samples of 6, by NMR analysis. | |
91.3% | Example 6. Synthesis of tert-butyl (R)-3-(2-hydroxyethyl)pyrrolidine-1-carboxylate (6); Procedure A; A solution of (R)-2-(1-(feAt-butoxycarbonyl)pyrroliotadiotane-3-yl)acetiotac acid (49 0 g, 214 mmol) in tetrahydrofuran (THF) (200 mL) was cooled to -10 0C 250 mL (250 mmol) of a 1 M borane in THF solution was added slowly to the flask while maintaining the temperature lower than 0 C The solution was warmed to ambient temperature and stirred for 1 h The solution was sampled hourly and analyzed by HPLC to establish completion of the reaction Upon completion of the reaction, the solution was cooled to 0 0C, and a 10% sodium hydroxide solution (80 mL) was added drop-wise over a 30 minute period to control gas evolution The solution was extracted with 500 mL of a 1 1 hexanes/ethyl acetate solution The organic layer was washed with saturated sodium chloride solution and dried with 10 g of silica gel The silica gel was removed by filtration and washed with 100 mL of 1 1 hexanes/ethyl acetate The organic layers were combined and concentrated under vacuum to give 6 (42 g, 91 3 %) as a light-orange oil that solidified upon sitting 1H NMR (CDCI3, 400 MHz) delta 3 67 (m, 2H), 3 38-3 62 (m, 2H), 3 25 (m, 1 H), 2 90 (m, 1 H), 2 25 (m, 1 H), 1 98-2 05 (m, 1 H) 1 61-1 69 (m, 2H), 1 48-1 59 (m, 2H), 1 46 (s, 9H) | |
91.3% | Example 6. Synthesis of tert-butyl (R)-3-(2-hydroxyethyl)pyrrolidine-1- carboxylate (6)Procedure A: A solution of (R)-2-(1-(terf-butoxycarbonyl)pyrrolidine-3- yl)acetic acid (49.0 g, 214 mmol) in tetrahydrofuran (THF) (200 mL) was cooled to - 10 0C. 250 mL (250 mmol) of a 1 M borane in THF solution was added slowly to the flask while maintaining the temperature lower than 0 0C. The solution was warmed to ambient temperature and stirred for 1 h. The solution was sampled hourly and analyzed by HPLC to establish completion of the reaction. Upon completion of the reaction, the solution was cooled to 0 0C, and a 10% sodium hydroxide solution (80 mL) was added drop-wise over a 30 minute period to control gas evolution. The solution was extracted with 500 mL of a 1 :1 hexanes/ethyl acetate solution. The organic layer was washed with saturated sodium chloride solution and dried with 10 g of silica gel. The silica gel was removed by filtration and washed with 100 mL of 1 :1 hexanes/ethyl acetate. The organic layers were combined and concentrated under vacuum to give 6 (42 g, 91.3 %) as a light-orange oil that solidified upon sitting. 1H NMR (CDCI3, 400 MHz) delta 3.67 (m, 2H), 3.38-3.62 (m, 2H), 3.25 (m, 1 H), 2.90 (m, 1 H), 2.25 (m, 1 H), 1.98-2.05 (m, 1 H), 1.61-1.69 (m, 2H), 1.48-1.59 (m, 2H), 1.46 (s, 9H). |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
92% | In dimethyl sulfoxide; toluene; for 2h;Reflux;Product distribution / selectivity; | A suspension of (f?)-2-(1-(tert-butoxycarbonyl)pyrroliotadiotan-3-yl)maloniotac acid (15 g, 55 mmol) in toluene (150 mL) and dimethylsulfoxide (2 mL) was heated to reflux for a period of 2 h The mixture was allowed to reach ambient and diluted with MTBE (150 mL) The organic solution was washed with 10% aqueous citric acid (2 x 200 mL), and the solvent was removed under vacuum to afford 11 6 g of (R)-2-(1-(tert-butoxycarbonyl)-pyrrolidin-3-yl)acetic acid as an off- white solid (92% yield) 1H NMR (DMSOd6, 400 MHz) delta 12 1 (s, 1 H), 3 36-3 48 (m, 1 H), 3 20- 3 34 (m, 1 H), 3 05-3 19 (m, 1 H, 2 72-2 84 (m, 1 H), 2 30-2 42 (m, 1 H), 2 22-2 30 (m, 2H), 1 85-2 00 (m, 1 H), 1 38-1 54 (m, , 1 H), 1 35 (2, 9H) |
92% | In dimethyl sulfoxide; toluene; for 2h;Reflux;Product distribution / selectivity; | A suspension of (R)-2-(1-(tert-butoxycarbonyl)pyrrolidin-3-yl)malonic acid (15 g, 55 mmol) in toluene (150 ml.) and dimethylsulfoxide (2 mL) was heated to reflux for a period of 2 h. The mixture was allowed to reach ambient and diluted with MTBE (150 mL). The organic solution was washed with 10% aqueous citric acid (2 * 200 mL), and the solvent was removed under vacuum to afford 1 1.6 g of (ft)-2-(1-(tert- butoxycarbonyl)-pyrrolidin-3-yl)acetic acid as an off-white solid (92% yield). 1H NMR (DMSOd6, 400 MHz): delta 12.1 (s, 1 H); 3.36-3.48 (m, 1 H); 3.20-3.34 (m, 1 H); 3.05- 3.19 (m, 1 H; 2.72-2.84 (m, 1 H); 2.30-2.42 (m, 1 H), 2.22-2.30 (m, 2H); 1.85-2.00 (m, 1 H); 1.38-1.54 (m, , 1 H), 1.35 (2, 9H). |
92% | With dimethyl sulfoxide; In toluene; for 2h;Reflux;Product distribution / selectivity; | A suspension of (f?)-2-(1-(tert-butoxycarbonyl)pyrrolidin-3-yl)malonic acid (15 g, 55 mmol) in toluene (150 mL) and dimethylsulfoxide (2 mL) was heated to reflux for a period of 2 h. The mixture was allowed to reach ambient and diluted with MTBE (150 mL). The organic solution was washed with 10% aqueous citric acid (2 chi 200 mL), and the solvent was removed under vacuum to afford 11.6 g of (R)-2-(1-(tert-butoxycarbonyl)-pyrrolidin-3- yl)acetic acid as an off-white solid (92% yield). 1H NMR (DMSO-d6, 400 MHz): delta 12.1 (s, 1 H); 3.36-3.48 (m, 1 H); 3.20-3.34 (m, 1 H); 3.05-3.19 (m, 1 H; 2.72-2.84 (m, 1 H); 2.30-2.42 (m, 1 H), 2.22-2.30 (m, 2H); 1.85-2.00 (m, 1 H); 1.38-1.54 (m, , 1 H), 1.35 (2, 9H). |
53% | With citric acid; In dimethyl sulfoxide; toluene; for 4h;Reflux; | 2-((R)-1-tert-butoxycarbonyl-pyrrolidin-3-yl)-malonic acid diethyl ester (0.785 g, 2.38 mmol) obtained in StepA was dissolved in 8 mL of THF. 6N NaOH (2 ml, 11.9 mmol) was added thereto, and the mixture was stirred at 40Cfor 16 hours. The reaction solution was adjusted to pH 2 by the use of 6N HCl aqueous solution and extracted withEtOAc. The organic layer was dried with anhydrous magnesiumsulfate and concentrated under reduced pressure toobtain 2-((R)-1-tert-butoxycarbonyl-pyrrolidin-3-yl)-malonic acid. The obtained compound was dissolved in 4.5 ml oftoluene. 0.06 ml of DMSO was added thereto, and the mixture was stirred for 4 hours under reflux. After addition of 10%citric acid, the reaction solution was extracted with EtOAc. The organic layer was dried with anhydrous magnesiumsulfateand purified by column chromatography to obtain the title compound (0.29 g, 53 %).1H-NMR (CDCl3) delta 3.62 (1H, m), 3.45 (1H, m), 3.29 (1H, m), 2.96 (1H, m), 2.56 (1H, m), 2.44 (2H, d), 2.07 (1H, m), 1.57(1H, m), 1.44 (9H, s). |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
95% | With 1-ethyl-(3-(3-dimethylamino)propyl)-carbodiimide hydrochloride;dmap; In diethyl ether; at 20℃; for 40h;Inert atmosphere; | a) 1,1-dimethylethyl (3R)-3-[2-(ethyloxy)-2-oxoethyl]-l-pyrrolidinecarboxylateIn an oven-dried 250 mL round bottom flask under nitrogen, ((3R)-1-[(1,1- dimethylethyl)oxy]carbonyl}-3-pyrrolidinyl)acetic acid (2.181 mmol) dissolved in diethyl ether (5 mL) was treated with l-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride (2.4 mmol), 4-(dimethylamino)pyridine (0.218 mmol), and ethanol (4.8 mmol) at room temperature and the mixture was stirred overnight. The resulting white gummy precipitate was diluted with ether (100 mL) and washed with 1M aq sodium hydrogen sulfate solution (100 mL), saturated aq sodium bicarbonate solution (100 mL), and brine (100 mL). The organic phase was isolated, dried over magnesium sulfate, and concentrated in vacuo to give the title compound as a clear oil (95%). MS(ES)+ m/e 258.1 [M+H]+, 280.0 [M+Na]+. |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
90.16% | With methanol; sodium hydroxide; at 100℃; | To a solution of (R)-tert-butyl 3-(cyanomethyl)pyrrolidine-1-carboxylate (1.6 g, 8.44 mmol) in MeOH (40 mL) was added NaOH solution (30%, 7.6 mL, 10.13 mmol). After the resulting mixture was stirred at 100C overnight, solvent was removed. The residue was acidified with aqueous HC1 (1 M) to pH 45 and extracted with ethyl acetate (100 mL x 2). Theorganic layers were dried over anhydrous Na2SO4, filtered and concentrated. The residue waspurified by silica gel column chromatography (petroleum ether: ethyl acetate = 100: 1 1: 1)to give (R)-2-(1-(tert-butoxycarbonyl)pyrrolidin-3-yl)acetic acid (1.6 g, 90.16% yield) as awhite solid. LC-MS: m/z = 174 [M+H-56j. |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
68.79% | To a mixture of <strong>[204688-60-8](R)-2-(1-(tert-butoxycarbonyl)pyrrolidin-3-yl)acetic acid</strong> (690 mg, 3.01 mmol) in dichloromethane (40 mL) was sequentially added 1-(3- dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (693.3 mg, 3.63 mmol) and 1- hydroxybenzotriazole (593.43 mg, 4.53 mmol), and then DIPEA (1.55 g, 12.04 mmol) was added drop-wise. The mixture was stirred for 10 mm and 3,3-difluoroazetidine hydrochloride(464.4 g, 3.6 mmol) was added. The reaction was stirred at room temperature overnight. The reaction was diluted with dichloromethane (50 mL x 2) and washed with water (50 mL), brine (50 mL), dried over anhydrous Na2SO4 and concentrated under reduced pressure to give a residue. The residue was purified by silica gel column chromatography (dichloromethane:methanol = 100: ito 50: ito give (R)-tert-butyl 3-(2-(3,3-difluoroazetidin-1-yl)-2-oxoethyl)pyrrolidine-i-carboxylate (630 mg, 68.79% yield) as a colorless oil. LC-MS: m/z =249 [M+H-56j. |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
98% | N,N-Diisopropylethylamine (0.23 mL, 1.32mmol, 3.0equiv) was added to a solution of(R)-(1-Boc-pyrrolidin-3-yl)-acetic(100 mg, 0.44mmol, 1.0equiv) inN,N-dimethylformamide (4.0 mL). HBTU (188 mg, 0.57mmol, 1.3equiv) was then added in one portion and the reaction mixture was stirredat 23Cfor 5 min. A solution of 4-(2-fluoroethyl)aniline (79 mg, 0.57mmol, 1.3equiv)inN,N-dimethylformamide (1.0 mL) was added dropwise and the reaction mixture was stirred at23Cfor 16 h. The reaction mixture was diluted with ethyl acetate (50 mL), washed with water (25 mL) and brine (25 mL),dried over anhydrous sodium sulfate, filtered and concentrated under reduced pressure. The crude product was purified by flash column chromatography (40%EtOAcin hexanes) to afford 151 mg of the title compound (98%).Physical State:pale yellow oil.Rf:0.12 (3:2 hexanes/EtOAc, UV light).HRMS(ESI+):m/zcalc. for C19H28FN2O3(M + H)+: 351.2078, found 351.2079.1H NMR(400 MHz, CHLOROFORM-d) delta = 8.13 (d,J= 29.6 Hz, 1H), 7.45 (brs, 2H), 7.14 (brd,J= 2.9 Hz, 2H), 4.57 (td,J= 6.5, 47.1 Hz, 2H), 3.64 - 3.53 (m, 1H), 3.47 - 3.37 (m, 1H), 3.34 - 3.21 (m, 1H), 3.01 - 2.87 (m, 3H), 2.73 - 2.59 (m, 1H), 2.47 - 2.28 (m, 2H), 2.14 - 2.03 (m, 1H), 1.65 - 1.50 (m, 1H), 1.49 - 1.29 (m, 9H).13C NMR(101MHz, CHLOROFORM-d) delta = 169.86, 154.66, 136.65, 132.98 (brs, 1C), 129.37, 120.24 (brs, 1C), 84.04 (d,J= 169.0 Hz, 1C), 79.34, 51.28 (brs, 1C, conformer 1), 50.93 (brs, 1C, conformer 2), 45.57 (brs, 1C, conformer 1), 45.02 (conformer 2), 40.47, 36.29 (d,J= 20.3 Hz, 1C), 35.62 (brs, 1C, conformer 1), 35.07 - 34.85 (brs, 1C, conformer 2), 31.48 (brs, 1C, conformer 1), 30.74 (conformer 2), 28.53. |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
78% | N,N-Diisopropylethylamine (0.68 mL, 3.93mmol, 3.0equiv) was added to a solution of(R)-(1-Boc-pyrrolidin-3-yl)-acetic(300 mg, 1.21mmol, 1.0equiv) inN,N-dimethylformamide (9.0 mL). HBTU (375 mg, 1.70mmol, 1.3equiv) was then added in one portion and the reaction mixture was stirredat 23Cfor 5 min. A solution of 4-(2-((tert-Butyldiphenylsilyl)oxy)ethyl)aniline (639 mg, 1.70mmol, 1.3equiv)inN,N-dimethylformamide (1.0 mL) was added dropwise and the reaction mixture was stirred at23Cfor 16 h. The reaction mixture was diluted with ethyl acetate (100 mL), washed with water (50 mL) and brine (50 mL),dried over anhydrous sodium sulfate, filtered and concentrated under reduced pressure. The crude product was purified by flash column chromatography (50%EtOAcin hexanes) to afford 601 mg of the title compound (78%). Physical State:colorless gum.Rf:0.43(1:1 hexanes/EtOAc, UV light).HRMS(ESI+):m/zcalc. for C35H46N2NaO4Si (M + Na)+: 609.3119, found 609.3116.1H NMR(498 MHz, CHLOROFORM-d) delta = 7.63 - 7.58 (m, 4H), 7.45 - 7.34 (m, 8H), 7.18 (s, 1H), 7.12 (d,J= 8.4 Hz, 2H), 3.83 (t,J= 6.9 Hz, 2H), 3.65 (dd,J= 7.2, 10.8 Hz, 1H), 3.52 - 3.45 (m, 1H), 3.38 - 3.31 (m, 1H), 3.03 (brdd,J= 7.7, 10.8 Hz, 1H), 2.83 (t,J= 6.8 Hz, 2H), 2.73 (brtt,J= 7.4, 15.0 Hz, 1H), 2.50 - 2.37 (m, 2H), 2.19 - 2.10 (m, 1H), 1.67 - 1.60 (m, 1H), 1.48 (s, 9H), 1.04 (s, 9H).13C NMR(125 MHz, CHLOROFORM-d) delta = 169.63, 155.01, 135.76, 135.56, 135.47, 133.77, 129.75, 129.56, 127.60, 119.74, 79.25, 65.06, 51.31, 45.24, 40.82, 38.67, 31.29, 31.20 , 28.55, 26.83, 19.16. |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
In dichloromethane; at 0 - 20℃; for 3h; | <strong>[204688-60-8](R)-3-carboxymethyl-pyrrolidin-1-carboxylic acid tert-butyl ester</strong> (0.29 g, 1.26 mmol) obtained in Step B wasdissolved in 10 ml of MC. 0.25 M CH2N2 (10 ml, 2.53 mmol) was was added thereto at 0C, and the mixture was stirredat room temperature for 3 hours. The reaction solution was concentrated under reduced pressure to obtain (R)-3-methoxycarbonylmethyl-pyrrolidin-1-carboxylic acid tert-butyl ester. The obtained compound was dissolved in 5 ml ofMC. HCl (1.58 mL, 6.32 mmol, 4 M 1,4-dioxane solution) was added thereto at 0C, and the mixture was stirred at roomtemperature for 2 hours. The reaction solution was concentrated under reduced pressure to obtain hydrochloric acidsalt of (R)-pyrrolidin-3-yl-acetic acid methyl ester. The obtained compound and 3,4,5-trifluoronitrobenzene (0.163 ml,1.42 mmol) were reacted in the same manner as in Step A of Preparation Example 84 to obtain the title compound (0.38g, 98 %).1H-NMR (CDCl3) |
A102223 [175526-97-3]
1-Boc-3-Pyrrolidineacetic acid
Similarity: 1.00
A157534 [204688-61-9]
(S)-2-(1-(tert-Butoxycarbonyl)pyrrolidin-3-yl)acetic acid
Similarity: 1.00
A312891 [183483-09-2]
1-Boc-Piperidine-3-acetic acid
Similarity: 0.96
A399827 [442877-23-8]
rel-(3AR,5r,6aS)-2-(tert-butoxycarbonyl)octahydrocyclopenta[c]pyrrole-5-carboxylic acid
Similarity: 0.95
A194868 [154775-43-6]
3-(1-(tert-Butoxycarbonyl)piperidin-4-yl)propanoic acid
Similarity: 0.94
A102223 [175526-97-3]
1-Boc-3-Pyrrolidineacetic acid
Similarity: 1.00
A157534 [204688-61-9]
(S)-2-(1-(tert-Butoxycarbonyl)pyrrolidin-3-yl)acetic acid
Similarity: 1.00
A173692 [101555-60-6]
(R)-2-(1-(tert-Butoxycarbonyl)pyrrolidin-2-yl)acetic acid
Similarity: 0.89
A265540 [59379-02-1]
tert-Butyl 3-formylpyrrolidine-1-carboxylate
Similarity: 0.89
A207383 [274692-08-9]
(S)-tert-Butyl 3-(2-aminoethyl)pyrrolidine-1-carboxylate
Similarity: 0.88