Home Cart Sign in  
Chemical Structure| 201932-92-5 Chemical Structure| 201932-92-5

Structure of 201932-92-5

Chemical Structure| 201932-92-5

*Storage: {[sel_prStorage]}

*Shipping: {[sel_prShipping]}

,{[proInfo.pro_purity]}

4.5 *For Research Use Only !

{[proInfo.pro_purity]}
Cat. No.: {[proInfo.prAm]} Purity: {[proInfo.pro_purity]}

Change View

Size Price VIP Price

US Stock

Global Stock

In Stock
{[ item.pr_size ]} Inquiry {[ getRatePrice(item.pr_usd,item.pr_rate,item.mem_rate,item.pr_is_large_size_no_price, item.vip_usd) ]}

US Stock: ship in 0-1 business day
Global Stock: ship in 5-7 days

  • {[ item.pr_size ]}

In Stock

- +

Please Login or Create an Account to: See VIP prices and availability

US Stock: ship in 0-1 business day
Global Stock: ship in 2 weeks

  • 1-2 Day Shipping
  • High Quality
  • Technical Support
Product Citations

Alternative Products

Product Details of [ 201932-92-5 ]

CAS No. :201932-92-5
Formula : C9H9NO5
M.W : 211.17
SMILES Code : O=C(OC)C1=CC=C([N+]([O-])=O)C(CO)=C1
MDL No. :MFCD29762434
InChI Key :UZYJUGUGWPESHO-UHFFFAOYSA-N
Pubchem ID :18372008

Safety of [ 201932-92-5 ]

GHS Pictogram:
Signal Word:Warning
Hazard Statements:H302-H315-H319-H335
Precautionary Statements:P261-P305+P351+P338

Computational Chemistry of [ 201932-92-5 ] Show Less

Physicochemical Properties

Num. heavy atoms 15
Num. arom. heavy atoms 6
Fraction Csp3 0.22
Num. rotatable bonds 4
Num. H-bond acceptors 5.0
Num. H-bond donors 1.0
Molar Refractivity 52.67
TPSA ?

Topological Polar Surface Area: Calculated from
Ertl P. et al. 2000 J. Med. Chem.

92.35 Ų

Lipophilicity

Log Po/w (iLOGP)?

iLOGP: in-house physics-based method implemented from
Daina A et al. 2014 J. Chem. Inf. Model.

1.48
Log Po/w (XLOGP3)?

XLOGP3: Atomistic and knowledge-based method calculated by
XLOGP program, version 3.2.2, courtesy of CCBG, Shanghai Institute of Organic Chemistry

0.72
Log Po/w (WLOGP)?

WLOGP: Atomistic method implemented from
Wildman SA and Crippen GM. 1999 J. Chem. Inf. Model.

0.72
Log Po/w (MLOGP)?

MLOGP: Topological method implemented from
Moriguchi I. et al. 1992 Chem. Pharm. Bull.
Moriguchi I. et al. 1994 Chem. Pharm. Bull.
Lipinski PA. et al. 2001 Adv. Drug. Deliv. Rev.

0.34
Log Po/w (SILICOS-IT)?

SILICOS-IT: Hybrid fragmental/topological method calculated by
FILTER-IT program, version 1.0.2, courtesy of SILICOS-IT, http://www.silicos-it.com

-0.55
Consensus Log Po/w?

Consensus Log Po/w: Average of all five predictions

0.54

Water Solubility

Log S (ESOL):?

ESOL: Topological method implemented from
Delaney JS. 2004 J. Chem. Inf. Model.

-1.63
Solubility 4.9 mg/ml ; 0.0232 mol/l
Class?

Solubility class: Log S scale
Insoluble < -10 < Poorly < -6 < Moderately < -4 < Soluble < -2 Very < 0 < Highly

Very soluble
Log S (Ali)?

Ali: Topological method implemented from
Ali J. et al. 2012 J. Chem. Inf. Model.

-2.24
Solubility 1.22 mg/ml ; 0.00579 mol/l
Class?

Solubility class: Log S scale
Insoluble < -10 < Poorly < -6 < Moderately < -4 < Soluble < -2 Very < 0 < Highly

Soluble
Log S (SILICOS-IT)?

SILICOS-IT: Fragmental method calculated by
FILTER-IT program, version 1.0.2, courtesy of SILICOS-IT, http://www.silicos-it.com

-1.69
Solubility 4.3 mg/ml ; 0.0204 mol/l
Class?

Solubility class: Log S scale
Insoluble < -10 < Poorly < -6 < Moderately < -4 < Soluble < -2 Very < 0 < Highly

Soluble

Pharmacokinetics

GI absorption?

Gatrointestinal absorption: according to the white of the BOILED-Egg

High
BBB permeant?

BBB permeation: according to the yolk of the BOILED-Egg

No
P-gp substrate?

P-glycoprotein substrate: SVM model built on 1033 molecules (training set)
and tested on 415 molecules (test set)
10-fold CV: ACC=0.72 / AUC=0.77
External: ACC=0.88 / AUC=0.94

No
CYP1A2 inhibitor?

Cytochrome P450 1A2 inhibitor: SVM model built on 9145 molecules (training set)
and tested on 3000 molecules (test set)
10-fold CV: ACC=0.83 / AUC=0.90
External: ACC=0.84 / AUC=0.91

No
CYP2C19 inhibitor?

Cytochrome P450 2C19 inhibitor: SVM model built on 9272 molecules (training set)
and tested on 3000 molecules (test set)
10-fold CV: ACC=0.80 / AUC=0.86
External: ACC=0.80 / AUC=0.87

No
CYP2C9 inhibitor?

Cytochrome P450 2C9 inhibitor: SVM model built on 5940 molecules (training set)
and tested on 2075 molecules (test set)
10-fold CV: ACC=0.78 / AUC=0.85
External: ACC=0.71 / AUC=0.81

No
CYP2D6 inhibitor?

Cytochrome P450 2D6 inhibitor: SVM model built on 3664 molecules (training set)
and tested on 1068 molecules (test set)
10-fold CV: ACC=0.79 / AUC=0.85
External: ACC=0.81 / AUC=0.87

No
CYP3A4 inhibitor?

Cytochrome P450 3A4 inhibitor: SVM model built on 7518 molecules (training set)
and tested on 2579 molecules (test set)
10-fold CV: ACC=0.77 / AUC=0.85
External: ACC=0.78 / AUC=0.86

No
Log Kp (skin permeation)?

Skin permeation: QSPR model implemented from
Potts RO and Guy RH. 1992 Pharm. Res.

-7.08 cm/s

Druglikeness

Lipinski?

Lipinski (Pfizer) filter: implemented from
Lipinski CA. et al. 2001 Adv. Drug Deliv. Rev.
MW ≤ 500
MLOGP ≤ 4.15
N or O ≤ 10
NH or OH ≤ 5

0.0
Ghose?

Ghose filter: implemented from
Ghose AK. et al. 1999 J. Comb. Chem.
160 ≤ MW ≤ 480
-0.4 ≤ WLOGP ≤ 5.6
40 ≤ MR ≤ 130
20 ≤ atoms ≤ 70

None
Veber?

Veber (GSK) filter: implemented from
Veber DF. et al. 2002 J. Med. Chem.
Rotatable bonds ≤ 10
TPSA ≤ 140

0.0
Egan?

Egan (Pharmacia) filter: implemented from
Egan WJ. et al. 2000 J. Med. Chem.
WLOGP ≤ 5.88
TPSA ≤ 131.6

0.0
Muegge?

Muegge (Bayer) filter: implemented from
Muegge I. et al. 2001 J. Med. Chem.
200 ≤ MW ≤ 600
-2 ≤ XLOGP ≤ 5
TPSA ≤ 150
Num. rings ≤ 7
Num. carbon > 4
Num. heteroatoms > 1
Num. rotatable bonds ≤ 15
H-bond acc. ≤ 10
H-bond don. ≤ 5

0.0
Bioavailability Score?

Abbott Bioavailability Score: Probability of F > 10% in rat
implemented from
Martin YC. 2005 J. Med. Chem.

0.55

Medicinal Chemistry

PAINS?

Pan Assay Interference Structures: implemented from
Baell JB. & Holloway GA. 2010 J. Med. Chem.

0.0 alert
Brenk?

Structural Alert: implemented from
Brenk R. et al. 2008 ChemMedChem

2.0 alert: heavy_metal
Leadlikeness?

Leadlikeness: implemented from
Teague SJ. 1999 Angew. Chem. Int. Ed.
250 ≤ MW ≤ 350
XLOGP ≤ 3.5
Num. rotatable bonds ≤ 7

No; 1 violation:MW<1.0
Synthetic accessibility?

Synthetic accessibility score: from 1 (very easy) to 10 (very difficult)
based on 1024 fragmental contributions (FP2) modulated by size and complexity penaties,
trained on 12'782'590 molecules and tested on 40 external molecules (r2 = 0.94)

2.05

Application In Synthesis of [ 201932-92-5 ]

* All experimental methods are cited from the reference, please refer to the original source for details. We do not guarantee the accuracy of the content in the reference.

  • Downstream synthetic route of [ 201932-92-5 ]

[ 201932-92-5 ] Synthesis Path-Downstream   1~3

  • 1
  • [ 201932-92-5 ]
  • [ 148625-35-8 ]
YieldReaction ConditionsOperation in experiment
With sodium periodate; In tetrahydrofuran; water; at 20℃; for 3h; A solution of 3-methyl-4-nitro-benzoic acid methyl ester (24.99 g, 128.1 mmol) and N,N-dimethylformamide dimethyl acetal (40.0 mL, 300 mmol) was heated at 1400C for 22.5 h. After cooling to rt, the reaction mixture was concentrated and the residue was crystallized from MeOH to give a purple solid.This solid was dissolved in THF (500 mL) and water (500 mL), and sodium periodate (62.62 g, 292.8 mmol) was added followed by additional sodium periodate (15.6 g, 72.9 mmol) two hours later. After stirring at rt for an additional 1 h, the reaction mixture was filtered through Celite washing with EtOAc (2 L). The filtrate was washed with saturated NaHCO3 (600 mL) and the organic layer was dried over Na2SO4. After filtration, the filtrate was concentrated and the residue was passed through a pad of silica gel, washing with CH2Cl2/hexanes (75percent- 100percent). The filtrate was concentrated and dried to give 3-formyl-4-nitro-benzoic acid methyl ester as yellowish solid. MS (EI): cal'd 210.0 (MH+), exp 210.2 (MH+).
  • 2
  • [ 201932-92-5 ]
  • [ 79-37-8 ]
  • [ 148625-35-8 ]
YieldReaction ConditionsOperation in experiment
With triethylamine; In dichloromethane; water; dimethyl sulfoxide; ethyl acetate; e) Preparation of methyl 3-formyl-4-nitrobenzoate In a 5-liter four-necked round-bottomed flask 1.5 l of methylene chloride was cooled to -78° C. Oxalyl chloride (164 g, 1.29 moles) was added slowly, followed by dropwise addition of 202 g (2.59 moles) of dry dimethylsulfoxide in 125 mL of methylene chloride, keeping the temperature below -70° C. After the addition was complete the reaction mixture was stirred at -78° C. for 30 minutes and 273 g (1.29 moles) of previously prepared methyl 3-hydroxymethyl-4-nitrobenzoate dissolved in 250 mL of methylene chloride was added dropwise. The reaction mixture was stirred an additional 30 minutes. Triethylamine (392 g 3.88 moles) in 125 mL of methylene chloride was added dropwise keeping the temperature below -65° C. The reaction mixture was warmed up slowly to room temperature and stirred overnight. The solvent was removed using a rotary evaporator and the resulting solid treated with a mixture of 2 l of ethyl acetate and 1 l of water. The organic phase was separated, filtered through diatomaceous earth, and washed sequentially with dilute aqueous hydrochloric acid (2*250 mL), water (2*250 mL), saturated aqueous sodium bicarbonate (2*250 mL), water (2*200 mL), brine (1*200 mL) and dried over anhydrous magnesium sultate. The solvent was removed using a rotary evaporator. The crude reaction mixture was triturated with hexane and filtered yielding 234.1 g of the expected methyl 3-formyl-4-nitrobenzoate as a yellow solid.
With triethylamine; In dichloromethane; water; dimethyl sulfoxide; ethyl acetate; e) Preparation of methyl 3-formyl-4-nitrobenzoate. In a 5-liter four-necked round-bottomed flask 1.5 l of methylene chloride was cooled to -78° C. Oxalyl chloride (164 g, 1.29 moles) was added slowly, followed by dropwise addition of 202 g (2.59 moles) of dry dimethylsulfoxide in 125 mL of methylene chloride, keeping the temperature below -70° C. After the addition was complete the reaction mixture was stirred at -78° C. for 30 minutes and 273 g (1.29 moles) of previously prepared methyl 3-hydroxymethyl-4-nitrobenzoate dissolved in 250 mL of methylene chloride was added dropwise. The reaction mixture was stirred an additional 30 minutes. Triethylamine (392 g 3.88 moles) in 125 mL of methylene chloride was added dropwise keeping the temperature below -65° C. The reaction mixture was warmed up slowly to room temperature and stirred overnight. The solvent was removed using a rotary evaporator and the resulting solid treated with a mixture of 2 l of ethyl acetate and 1 l of water. The organic phase was separated, filtered through diatomaceous earth, and washed sequentially with dilute aqueous hydrochloric acid (2*250 mL), water (2*250 mL), saturated aqueous sodium bicarbonate (2*250 mL), water (2*200 mL), brine (1*200 mL) and dried over anhydrous magnesium sultate. The solvent was removed using a rotary evaporator. The crude reaction mixture was triturated with hexane and filtered yielding 234.1 g of the expected methyl 3-formyl-4-nitrobenzoate as a yellow solid.
With triethylamine; In dichloromethane; water; dimethyl sulfoxide; ethyl acetate; e) Preparation of methyl 3-formyl-4-nitrobenzoate In a 5-liter four-necked round-bottomed flask 1.5 l of methylene chloride was cooled to -78° C. Oxalyl chloride (164 g 1.29 moles) was added slowly, followed by dropwise addition of 202 g (2.59 moles) of dry dimethylsulfoxide in 125 mL of methylene chloride, keeping the temperature below -70° C. After the addition was complete the reaction mixture was stirred at -78° C. for 30 minutes and 273 g (1.29 moles) of previously prepared methyl 3-hydroxymethyl-4-nitrobenzoate dissolved in 250 mL of methylene chloride was added dropwise. The reaction mixture was stirred an additional 30 minutes. Triethylamine (392 g 3.88 moles) in 125 mL of methylene chloride was added dropwise keeping the temperature below -65° C. The reaction mixture was warmed up slowly to room temperature and stirred overnight. The solvent was removed using a rotary evaporator and the resulting solid treated with a mixture of 2 l of ethyl acetate and 1 l of water. The organic phase was separated, filtered through diatomaceous earth, and washed sequentially with dilute aqueous hydrochloric acid (2*250 mL), water (2*250 mL), saturated aqueous sodium bicarbonate (2*250 mL), water (2*200 mL), brine (1*200 mL) and dried over anhydrous magnesium sultate. The solvent was removed using a rotary evaporator. The crude reaction mixture was triturated with hexane and filtered yielding 234.1 g of the expected methyl 3-formyl-4-nitrobenzoate as a yellow solid.
With triethylamine; In dichloromethane; water; dimethyl sulfoxide; ethyl acetate; e) Preparation of methyl 3-formyl-4-nitrobenzoate. In a 5-liter four-necked round-bottomed flask 1.5 l of methylene chloride was cooled to -78° C. Oxalyl chloride (164 g, 1.29 moles) was added slowly, followed by dropwise addition of 202 g (2.59 moles) of dry dimethylsulfoxide in 125 mL of methylene chloride, keeping the temperature below -70° C. After the addition was complete the reaction mixture was stirred at -78° C. for 30 minutes and 273 g (1.29 moles) of previously prepared methyl 3-hydroxymethyl-4-nitrobenzoate dissolved in 250 mL of methylene chloride was added dropwise. The reaction mixture was stirred an additional 30 minutes. Triethylamine (392 g 3.88 moles) in 125 mL of methylene chloride was added dropwise keeping the temperature below -65° C. The reaction mixture was warmed up slowly to room temperature and stirred overnight. The solvent was removed using a rotary evaporator and the resulting solid treated with a mixture of 2 l of ethyl acetate and 1 l of water. The organic phase was separated, filtered through diatomaceous earth, and washed sequentially with dilute aqueous hydrochloric acid (2*250 mL), water (2*250 mL), saturated aqueous sodium bicarbonate (2*250 mL), water (2*200 mL), brine (1*200 mL) and dried over anhydrous magnesium sulfate. The solvent was removed using a rotary evaporator. The crude reaction mixture was triturated with hexane and filtered yielding 234.1 g of the expected methyl 3-formyl-4-nitrobenzoate as a yellow solid.
With triethylamine; In dichloromethane; water; dimethyl sulfoxide; ethyl acetate; e) Preparation of methyl 3-formyl-4-nitrobenzoate. In a 5-liter four-necked round-bottomed flask 1.5 l of methylene chloride was cooled to -78 oC. Oxalyl chloride (164 g, 1.29 moles) was added slowly, followed by dropwise addition of 202 g (2.59 moles) of dry dimethylsulfoxide in 125 mL of methylene chloride, keeping the temperature below -70 oC. After the addition was complete the reaction mixture was stirred at -78 oC for 30 minutes and 273 g (1.29 moles) of previously prepared methyl 3-hydroxymethyl-4-nitrobenzoate dissolved in 250 mL of methylene chloride was added dropwise. The reaction mixture was stirred an additional 30 minutes. Triethylamine (392 g 3.88 moles) in 125 mL of methylene chloride was added dropwise keeping the temperature below -65 oC. The reaction mixture was warmed up slowly to room temperature and stirred overnight. The solvent was removed using a rotary evaporator and the resulting solid treated with a mixture of 2 l of ethyl acetate and 1 l of water. The organic phase was separated, filtered through diatomaceous earth, and washed sequentially with dilute aqueous hydrochloric acid (2x250 mL), water (2x250 mL), saturated aqueous sodium bicarbonate (2x250 mL), water (2x200 mL), brine (1x200 mL) and dried over anhydrous magnesium sultate. The solvent was removed using a rotary evaporator. The crude reaction mixture was triturated with hexane and filtered yielding 234.1 g of the expected methyl 3-formyl-4-nitrobenzoate as a yellow solid.
With triethylamine; In dichloromethane; water; dimethyl sulfoxide; ethyl acetate; e) Preparation of methyl 3-formyl-4-nitrobenzoate. In a 5-liter four-necked round-bottomed flask 1.5 l of methylene chloride was cooled to -78 °C. Oxalyl chloride (164 g, 1.29 moles) was added slowly, followed by dropwise addition of 202 g (2.59 moles) of dry dimethylsulfoxide in 125 mL of methylene chloride, keeping the temperature below -70 °C. After the addition was complete the reaction mixture was stirred at -78 °C for 30 minutes and 273 g (1.29 moles) of previously prepared methyl 3-hydroxymethyl-4-nitrobenzoate dissolved in 250 mL of methylene chloride was added dropwise. The reaction mixture was stirred an additional 30 minutes. Triethylamine (392 g 3.88 moles) in 125 mL of methylene chloride was added dropwise keeping the temperature below -65 °C. The reaction mixture was warmed up slowly to room temperature and stirred overnight. The solvent was removed using a rotary evaporator and the resulting solid treated with a mixture of 2 l of ethyl acetate and 1 l of water. The organic phase was separated, filtered through diatomaceous earth, and washed sequentially with dilute aqueous hydrochloric acid (2x250 mL), water (2x250 mL), saturated aqueous sodium bicarbonate (2x250 mL), water (2x200 mL), brine (1x200 mL) and dried over anhydrous magnesium sultate. The solvent was removed using a rotary evaporator. The crude reaction mixture was triturated with hexane and filtered yielding 234.1 g of the expected methyl 3-formyl-4-nitrobenzoate as a yellow solid.
With triethylamine; In dichloromethane; water; dimethyl sulfoxide; e) Preparation of methyl 3-formyl-4-nitrobenzoate. In a 5-liter four-necked round-bottomed flask 1.5 l of methylene chloride was cooled to -78 °C. Oxalyl chloride (164 g, 1.29 moles) was added slowly, followed by dropwise addition of 202 g (2.59 moles) of dry dimethylsulfoxide in 125 mL of methylene chloride, keeping the temperature below -70 °C. After the addition was complete the reaction mixture was stirred at -78 °C for 30 minutes and 273 g (1.29 moles) of previously prepared methyl 3-hydroxymethyl-4-nitrobenzoate dissolved in 250 mL of methylene chloride was added dropwise. The reaction mixture was stirred an additional 30 minutes. Triethylamine (392 g 3.88 moles) in 125 mL of methylene chloride was added dropwise keeping the temperature below -65 °C. The reaction mixture was warmed up slowly to room temperature and stirred overnight. The solvent was removed using a rotary evaporator and the resulting solid treated with a mixture of 2 1 of ethyl acetate and 1 l of water. The organic phase was separated, filtered through diatomaceous earth, and washed sequentially with dilute aqueous hydrochloric acid (2x250 mL), water (2x250 mL), saturated aqueous sodium bicarbonate (2x250 mL), water (2x200 mL), brine (1x200 mL) and dried over anhydrous magnesium sulfate. The solvent was removed using a rotary evaporator. The crude reaction mixture was triturated with hexane and filtered yielding 234.1 g of the expected methyl 3-formyl-4-nitrobenzoate as a yellow solid.
With triethylamine; In dichloromethane; dimethyl sulfoxide; e) Preparation of methyl 3-formyl-4-nitrobenzoate. In a 5-liter four-necked round-bottomed flask 1.5 1 of methylene chloride was cooled to -78°C. Oxalyl chloride (164 g, 1.29 moles) was added slowly, followed by dropwise addition of 202 g (2.59 moles) of dry dimethylsulfoxide in 125 mL of methylene chloride, keeping the temperature below -70°C. After the addition was complete the reaction mixture was stirred at -78 °C for 30 minutes and 273 g (1.29 moles) of previously prepared methyl 3-hydroxymethyl-4-nitrobenzoate dissolved in 250 mL of methylene chloride was added dropwise. The reaction mixture was stirred an additional 30 minutes. Triethylamine (392 g 3.88 moles) in 125 mL of methylene chloride was added dropwise keeping the temperature below -65 °C. The reaction mixture was warmed up slowly to room temperature and stirred overnight. The solvent was removed using a rotary evaporator and the resulting solid treated with a mixture of 2 1 of ethyl acetate and 11 of water. The organic phase was separated, filtered through diatomaceous earth, and washed sequentially with dilute aqueous hydrochloric acid (2x250 mL), water (2x250 mL), saturated aqueous sodium bicarbonate (2x250 mL), water (2x200 mL), brine (1x200 mL) and dried over anhydrous magnesium sultate. The solvent was removed using a rotary evaporator. The crude reaction mixture was triturated with hexane and filtered yielding 234.1 g of the expected methyl 3-formyl-4-nitrobenzoate as a yellow solid.

  • 3
  • [ 148625-35-8 ]
  • [ 201932-92-5 ]
YieldReaction ConditionsOperation in experiment
1.06 g With methanol; sodium tetrahydroborate; at 0℃; for 0.333333h; ( RS-3-49) Methyl 3-formyl-4-nitrobenzoate (1.20 g, 5.73 mmol) was dissolved in MeOH (10 mL) and cooled to 0 °C. Sodium borohydride (69 mg, 1.72 mmol) was added in one portion, and the reaction mixture was stirred for 20 minutes. The reduction was quenched with 1 N HC1 (10 mL) and the methanol portion evaporated in vacuo. The aqueous phase was extracted with CH2C12 (3 chi 10 mL) to afford 1.06 g of benzylic alcohol, which was used without further purification .
 

Historical Records

Technical Information

Categories

Related Functional Groups of
[ 201932-92-5 ]

Aryls

Chemical Structure| 20587-30-8

A151183 [20587-30-8]

Methyl 5-methyl-2-nitrobenzoate

Similarity: 0.98

Chemical Structure| 61940-22-5

A152423 [61940-22-5]

Methyl 2-methyl-6-nitrobenzoate

Similarity: 0.98

Chemical Structure| 35998-96-0

A435238 [35998-96-0]

Methyl 5-amino-2-nitrobenzoate

Similarity: 0.98

Chemical Structure| 84228-45-5

A526900 [84228-45-5]

Methyl 4-amino-2-nitrobenzoate

Similarity: 0.98

Chemical Structure| 24078-21-5

A127769 [24078-21-5]

Methyl 3-methyl-4-nitrobenzoate

Similarity: 0.98

Alcohols

Chemical Structure| 82379-38-2

A309810 [82379-38-2]

4-(Hydroxymethyl)-3-nitrobenzoic acid

Similarity: 0.91

Chemical Structure| 22996-17-4

A886848 [22996-17-4]

(4-Amino-2-nitrophenyl)methanol

Similarity: 0.78

Chemical Structure| 78468-34-5

A145094 [78468-34-5]

2-Amino-4-nitrobenzenemethanol

Similarity: 0.76

Chemical Structure| 86031-17-6

A131980 [86031-17-6]

4-(Hydroxymethyl)-3-nitrophenol

Similarity: 0.75

Chemical Structure| 80866-75-7

A695992 [80866-75-7]

(3-Methyl-4-nitrophenyl)methanol

Similarity: 0.75

Esters

Chemical Structure| 20587-30-8

A151183 [20587-30-8]

Methyl 5-methyl-2-nitrobenzoate

Similarity: 0.98

Chemical Structure| 61940-22-5

A152423 [61940-22-5]

Methyl 2-methyl-6-nitrobenzoate

Similarity: 0.98

Chemical Structure| 35998-96-0

A435238 [35998-96-0]

Methyl 5-amino-2-nitrobenzoate

Similarity: 0.98

Chemical Structure| 84228-45-5

A526900 [84228-45-5]

Methyl 4-amino-2-nitrobenzoate

Similarity: 0.98

Chemical Structure| 24078-21-5

A127769 [24078-21-5]

Methyl 3-methyl-4-nitrobenzoate

Similarity: 0.98

Nitroes

Chemical Structure| 20587-30-8

A151183 [20587-30-8]

Methyl 5-methyl-2-nitrobenzoate

Similarity: 0.98

Chemical Structure| 61940-22-5

A152423 [61940-22-5]

Methyl 2-methyl-6-nitrobenzoate

Similarity: 0.98

Chemical Structure| 35998-96-0

A435238 [35998-96-0]

Methyl 5-amino-2-nitrobenzoate

Similarity: 0.98

Chemical Structure| 84228-45-5

A526900 [84228-45-5]

Methyl 4-amino-2-nitrobenzoate

Similarity: 0.98

Chemical Structure| 24078-21-5

A127769 [24078-21-5]

Methyl 3-methyl-4-nitrobenzoate

Similarity: 0.98