Structure of 16292-95-8
*Storage: {[sel_prStorage]}
*Shipping: {[sel_prShipping]}
The BI-3802 was designed by Boehringer Ingelheim and could be obtained free of charge through the Boehringer Ingelheim open innovation portal opnMe.com, associated with its negative control.
4.5
*For Research Use Only !
Change View
Size | Price | VIP Price | US Stock |
Global Stock |
In Stock | ||
{[ item.pr_size ]} |
Inquiry
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]} {[ getRatePrice(item.pr_usd,item.pr_rate,1,item.pr_is_large_size_no_price, item.discount_usd) ]} {[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]} |
Inquiry {[ getRatePrice(item.pr_usd,item.pr_rate,item.mem_rate,item.pr_is_large_size_no_price, item.vip_usd) ]} | Inquiry {[ item.pr_usastock ]} In Stock Inquiry - | {[ item.pr_chinastock ]} {[ item.pr_remark ]} In Stock 1-2 weeks - Inquiry - | Login | - + | Inquiry |
Please Login or Create an Account to: See VIP prices and availability
US Stock: ship in 0-1 business day
Global Stock: ship in 5-7 days
1-2weeks
Inquiry
{[ getRatePrice(item.pr_usd,item.pr_rate,item.mem_rate,item.pr_is_large_size_no_price, item.vip_usd) ]}
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]}
{[ getRatePrice(item.pr_usd,1,item.mem_rate,item.pr_is_large_size_no_price, item.pr_usd) ]}
Inquiry
{[ getRatePrice(item.pr_usd,item.pr_rate,1,item.pr_is_large_size_no_price, item.vip_usd) ]}
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]}
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]}
In Stock
- +
Please Login or Create an Account to: See VIP prices and availability
US Stock: ship in 0-1 business day
Global Stock: ship in 2 weeks
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
CAS No. : | 16292-95-8 |
Formula : | C7H7NO4 |
M.W : | 169.14 |
SMILES Code : | COC1=C(C=CC(=C1)O)[N+](=O)[O-] |
MDL No. : | MFCD11840329 |
InChI Key : | VDQSACYMBGQMFC-UHFFFAOYSA-N |
Pubchem ID : | 12900532 |
GHS Pictogram: |
![]() |
Signal Word: | Warning |
Hazard Statements: | H315-H319-H335 |
Precautionary Statements: | P261-P305+P351+P338 |
Num. heavy atoms | 12 |
Num. arom. heavy atoms | 6 |
Fraction Csp3 | 0.14 |
Num. rotatable bonds | 2 |
Num. H-bond acceptors | 4.0 |
Num. H-bond donors | 1.0 |
Molar Refractivity | 43.78 |
TPSA ? Topological Polar Surface Area: Calculated from |
75.28 Ų |
Log Po/w (iLOGP)? iLOGP: in-house physics-based method implemented from |
1.06 |
Log Po/w (XLOGP3)? XLOGP3: Atomistic and knowledge-based method calculated by |
0.83 |
Log Po/w (WLOGP)? WLOGP: Atomistic method implemented from |
1.31 |
Log Po/w (MLOGP)? MLOGP: Topological method implemented from |
0.05 |
Log Po/w (SILICOS-IT)? SILICOS-IT: Hybrid fragmental/topological method calculated by |
-0.8 |
Consensus Log Po/w? Consensus Log Po/w: Average of all five predictions |
0.49 |
Log S (ESOL):? ESOL: Topological method implemented from |
-1.65 |
Solubility | 3.79 mg/ml ; 0.0224 mol/l |
Class? Solubility class: Log S scale |
Very soluble |
Log S (Ali)? Ali: Topological method implemented from |
-1.99 |
Solubility | 1.72 mg/ml ; 0.0102 mol/l |
Class? Solubility class: Log S scale |
Very soluble |
Log S (SILICOS-IT)? SILICOS-IT: Fragmental method calculated by |
-1.32 |
Solubility | 8.0 mg/ml ; 0.0473 mol/l |
Class? Solubility class: Log S scale |
Soluble |
GI absorption? Gatrointestinal absorption: according to the white of the BOILED-Egg |
High |
BBB permeant? BBB permeation: according to the yolk of the BOILED-Egg |
No |
P-gp substrate? P-glycoprotein substrate: SVM model built on 1033 molecules (training set) |
No |
CYP1A2 inhibitor? Cytochrome P450 1A2 inhibitor: SVM model built on 9145 molecules (training set) |
No |
CYP2C19 inhibitor? Cytochrome P450 2C19 inhibitor: SVM model built on 9272 molecules (training set) |
No |
CYP2C9 inhibitor? Cytochrome P450 2C9 inhibitor: SVM model built on 5940 molecules (training set) |
No |
CYP2D6 inhibitor? Cytochrome P450 2D6 inhibitor: SVM model built on 3664 molecules (training set) |
No |
CYP3A4 inhibitor? Cytochrome P450 3A4 inhibitor: SVM model built on 7518 molecules (training set) |
No |
Log Kp (skin permeation)? Skin permeation: QSPR model implemented from |
-6.74 cm/s |
Lipinski? Lipinski (Pfizer) filter: implemented from |
0.0 |
Ghose? Ghose filter: implemented from |
None |
Veber? Veber (GSK) filter: implemented from |
0.0 |
Egan? Egan (Pharmacia) filter: implemented from |
0.0 |
Muegge? Muegge (Bayer) filter: implemented from |
1.0 |
Bioavailability Score? Abbott Bioavailability Score: Probability of F > 10% in rat |
0.55 |
PAINS? Pan Assay Interference Structures: implemented from |
0.0 alert |
Brenk? Structural Alert: implemented from |
2.0 alert: heavy_metal |
Leadlikeness? Leadlikeness: implemented from |
No; 1 violation:MW<1.0 |
Synthetic accessibility? Synthetic accessibility score: from 1 (very easy) to 10 (very difficult) |
1.94 |
* All experimental methods are cited from the reference, please refer to the original source for details. We do not guarantee the accuracy of the content in the reference.
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
68% | With potassium carbonate; In N,N-dimethyl-formamide; at 70℃; for 4.0h; | To a solution of 3-methoxy-4-nitrophenol (0.5 g, 3 mmol) prepared in Example 132 Step A in anhydrous DMF (25 mL) were added K2CO3 (0.8 g, 5.9 mmol) and <strong>[357913-53-2]methanesulfonic acid 3-methanesulfonyl-propyl ester</strong> (0.7 g, 3.2 mmol) sequentially. The reaction mixture was heated at 70 C. for 4 h. The mixture was cooled to room temperature, and diluted with water. The mixture was extracted with ethyl acetate three times. The combined organic extract was washed with water, brine, dried over MgSO4, and concentrated to give 2-methoxy-4-(3-(methylsulfonyl)propoxy)-1-nitrobenzene as a off white solid (0.58 g, 68%). |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
4.7%; 34%; 29% | With bismuth (III) nitrate pentahydrate; In acetone; at 0℃; for 20.0h; | General procedure: To a solid mixture of phenol (1-3 equiv) and Bi(NO3)35H2O (1 equiv) or Fe(NO3)39H2O (1 equiv) was added acetone (10 ml/mmol). The resulting mixture was stirred at room temperature under air or at reflux for 2-24 hours, Tables 1 and 2. When the reaction was completed the insoluble materials were filtered off using a pad of Celite and the residue was washed by acetone (ca. 5 ml/mmol). The filtrate was treated by NaHCO3 (0.1 g/mmol) until evolution of CO2 stopped. Insoluble material was filtered off again, and the solvent was removed under vacuum in a water bath 25-35C. The nitrated products were separated or purified using silica gel chromatography, to give pure phenolic compounds. All products were characterized by 1H NMR,13C NMR and IR and were identified by comparison of the spectral data and melting points with those reported in literature and characterized. |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
820 mg | In chlorobenzene; at 130℃; for 16h; | Compound 1E (600 mg, 2.54 mmol) was added to a solution of compound 72A (428.81 mg, 2.54 mmol) inchlorobenzene (10 mL) and stirred at 130 °C for 16 hours. After rotary drying under vacuum, the residue was washedwith ethyl acetate ester (30 ml) to give compound 72B (820 mg). LCMS (ESI) m/z: 370 (M+1). |