Home Cart Sign in  
Chemical Structure| 158938-08-0 Chemical Structure| 158938-08-0

Structure of 158938-08-0

Chemical Structure| 158938-08-0

*Storage: {[sel_prStorage]}

*Shipping: {[sel_prShipping]}

,{[proInfo.pro_purity]}

4.5 *For Research Use Only !

{[proInfo.pro_purity]}
Cat. No.: {[proInfo.prAm]} Purity: {[proInfo.pro_purity]}

Change View

Size Price VIP Price

US Stock

Global Stock

In Stock
{[ item.pr_size ]} Inquiry {[ getRatePrice(item.pr_usd,item.pr_rate,item.mem_rate,item.pr_is_large_size_no_price, item.vip_usd) ]}

US Stock: ship in 0-1 business day
Global Stock: ship in 5-7 days

  • {[ item.pr_size ]}

In Stock

- +

Please Login or Create an Account to: See VIP prices and availability

US Stock: ship in 0-1 business day
Global Stock: ship in 2 weeks

  • 1-2 Day Shipping
  • High Quality
  • Technical Support
Product Citations

Product Citations

Gerase, Yisak Tsegazab ; Elmanova, Anna ; Finkelmeyer, Sarah Jasmin ; Dellith, Andrea ; Dellith, Jan ; Guthmuller, Julien , et al.

Abstract: Supramolecular organization governs the structure and optoelectronic properties of organic thin films. This study shows that films based on the non-fullerene acceptor Y6 can be precisely structured via assembly at the airwater interface. Theoretical cross-sectional areas, Langmuir isotherms, and Brewster angle microscopy reveal that Y6, despite its complex structure, is sufficiently amphiphilic to form well-defined two-dimensional layers. Mechanical annealing through compression-expansion (CE) cycles systematically improves structural uniformity, as evidenced by narrower in-situ detected fluorescence spectra. Repeated CE-cycles also shift the maximum of the compressional modulus towards denser packing. Compared to spin-cast films, Langmuir-Schaefer (LS) layers exhibit a significantly reduced Stokes shift, suggesting less reorganization after photoexcitation and thus a higher supramolecular order. Organic thin-film transistors (OTFTs) fabricated using the LS technique achieve mobilities comparable to those of spin-cast films, despite being substantially thinner (≤ 3 nm, determined by atomic force microscopy), thus requiring considerably less material. Notably, Y6-LS OTFTs outperform previously reported polymer-based LS-OTFTs by one order of magnitude in charge carrier mobility. This work highlights the potential of interfacial assembly for thin film fabrication and underscores the advantages of mechanical annealing and insitu spectroscopy to enhance the performance of organic optoelectronic devices.

Keywords: Langmuir layers ; ultrathin film ; non-fullerene acceptor ; optoelectronics ; morphology

Purchased from AmBeed:

Alternative Products

Product Details of [ 158938-08-0 ]

CAS No. :158938-08-0
Formula : C24H24O3
M.W : 360.45
SMILES Code : O=C(C1=CC=C(C2=CC=C(C3=CC=C(OCCCCC)C=C3)C=C2)C=C1)O
MDL No. :MFCD17019206
InChI Key :APIUMVXKBCYBSC-UHFFFAOYSA-N
Pubchem ID :9798987

Safety of [ 158938-08-0 ]

GHS Pictogram:
Signal Word:Warning
Hazard Statements:H315-H319-H335
Precautionary Statements:P261-P305+P351+P338

Computational Chemistry of [ 158938-08-0 ] Show Less

Physicochemical Properties

Num. heavy atoms 27
Num. arom. heavy atoms 18
Fraction Csp3 0.21
Num. rotatable bonds 8
Num. H-bond acceptors 3.0
Num. H-bond donors 1.0
Molar Refractivity 109.99
TPSA ?

Topological Polar Surface Area: Calculated from
Ertl P. et al. 2000 J. Med. Chem.

46.53 Ų

Lipophilicity

Log Po/w (iLOGP)?

iLOGP: in-house physics-based method implemented from
Daina A et al. 2014 J. Chem. Inf. Model.

3.85
Log Po/w (XLOGP3)?

XLOGP3: Atomistic and knowledge-based method calculated by
XLOGP program, version 3.2.2, courtesy of CCBG, Shanghai Institute of Organic Chemistry

7.36
Log Po/w (WLOGP)?

WLOGP: Atomistic method implemented from
Wildman SA and Crippen GM. 1999 J. Chem. Inf. Model.

6.29
Log Po/w (MLOGP)?

MLOGP: Topological method implemented from
Moriguchi I. et al. 1992 Chem. Pharm. Bull.
Moriguchi I. et al. 1994 Chem. Pharm. Bull.
Lipinski PA. et al. 2001 Adv. Drug. Deliv. Rev.

4.89
Log Po/w (SILICOS-IT)?

SILICOS-IT: Hybrid fragmental/topological method calculated by
FILTER-IT program, version 1.0.2, courtesy of SILICOS-IT, http://www.silicos-it.com

6.1
Consensus Log Po/w?

Consensus Log Po/w: Average of all five predictions

5.7

Water Solubility

Log S (ESOL):?

ESOL: Topological method implemented from
Delaney JS. 2004 J. Chem. Inf. Model.

-6.68
Solubility 0.0000758 mg/ml ; 0.00000021 mol/l
Class?

Solubility class: Log S scale
Insoluble < -10 < Poorly < -6 < Moderately < -4 < Soluble < -2 Very < 0 < Highly

Poorly soluble
Log S (Ali)?

Ali: Topological method implemented from
Ali J. et al. 2012 J. Chem. Inf. Model.

-8.17
Solubility 0.00000246 mg/ml ; 0.0000000068 mol/l
Class?

Solubility class: Log S scale
Insoluble < -10 < Poorly < -6 < Moderately < -4 < Soluble < -2 Very < 0 < Highly

Poorly soluble
Log S (SILICOS-IT)?

SILICOS-IT: Fragmental method calculated by
FILTER-IT program, version 1.0.2, courtesy of SILICOS-IT, http://www.silicos-it.com

-8.51
Solubility 0.00000113 mg/ml ; 0.0000000031 mol/l
Class?

Solubility class: Log S scale
Insoluble < -10 < Poorly < -6 < Moderately < -4 < Soluble < -2 Very < 0 < Highly

Poorly soluble

Pharmacokinetics

GI absorption?

Gatrointestinal absorption: according to the white of the BOILED-Egg

High
BBB permeant?

BBB permeation: according to the yolk of the BOILED-Egg

No
P-gp substrate?

P-glycoprotein substrate: SVM model built on 1033 molecules (training set)
and tested on 415 molecules (test set)
10-fold CV: ACC=0.72 / AUC=0.77
External: ACC=0.88 / AUC=0.94

Yes
CYP1A2 inhibitor?

Cytochrome P450 1A2 inhibitor: SVM model built on 9145 molecules (training set)
and tested on 3000 molecules (test set)
10-fold CV: ACC=0.83 / AUC=0.90
External: ACC=0.84 / AUC=0.91

No
CYP2C19 inhibitor?

Cytochrome P450 2C19 inhibitor: SVM model built on 9272 molecules (training set)
and tested on 3000 molecules (test set)
10-fold CV: ACC=0.80 / AUC=0.86
External: ACC=0.80 / AUC=0.87

Yes
CYP2C9 inhibitor?

Cytochrome P450 2C9 inhibitor: SVM model built on 5940 molecules (training set)
and tested on 2075 molecules (test set)
10-fold CV: ACC=0.78 / AUC=0.85
External: ACC=0.71 / AUC=0.81

Yes
CYP2D6 inhibitor?

Cytochrome P450 2D6 inhibitor: SVM model built on 3664 molecules (training set)
and tested on 1068 molecules (test set)
10-fold CV: ACC=0.79 / AUC=0.85
External: ACC=0.81 / AUC=0.87

Yes
CYP3A4 inhibitor?

Cytochrome P450 3A4 inhibitor: SVM model built on 7518 molecules (training set)
and tested on 2579 molecules (test set)
10-fold CV: ACC=0.77 / AUC=0.85
External: ACC=0.78 / AUC=0.86

No
Log Kp (skin permeation)?

Skin permeation: QSPR model implemented from
Potts RO and Guy RH. 1992 Pharm. Res.

-3.27 cm/s

Druglikeness

Lipinski?

Lipinski (Pfizer) filter: implemented from
Lipinski CA. et al. 2001 Adv. Drug Deliv. Rev.
MW ≤ 500
MLOGP ≤ 4.15
N or O ≤ 10
NH or OH ≤ 5

1.0
Ghose?

Ghose filter: implemented from
Ghose AK. et al. 1999 J. Comb. Chem.
160 ≤ MW ≤ 480
-0.4 ≤ WLOGP ≤ 5.6
40 ≤ MR ≤ 130
20 ≤ atoms ≤ 70

None
Veber?

Veber (GSK) filter: implemented from
Veber DF. et al. 2002 J. Med. Chem.
Rotatable bonds ≤ 10
TPSA ≤ 140

0.0
Egan?

Egan (Pharmacia) filter: implemented from
Egan WJ. et al. 2000 J. Med. Chem.
WLOGP ≤ 5.88
TPSA ≤ 131.6

1.0
Muegge?

Muegge (Bayer) filter: implemented from
Muegge I. et al. 2001 J. Med. Chem.
200 ≤ MW ≤ 600
-2 ≤ XLOGP ≤ 5
TPSA ≤ 150
Num. rings ≤ 7
Num. carbon > 4
Num. heteroatoms > 1
Num. rotatable bonds ≤ 15
H-bond acc. ≤ 10
H-bond don. ≤ 5

1.0
Bioavailability Score?

Abbott Bioavailability Score: Probability of F > 10% in rat
implemented from
Martin YC. 2005 J. Med. Chem.

0.56

Medicinal Chemistry

PAINS?

Pan Assay Interference Structures: implemented from
Baell JB. & Holloway GA. 2010 J. Med. Chem.

0.0 alert
Brenk?

Structural Alert: implemented from
Brenk R. et al. 2008 ChemMedChem

0.0 alert: heavy_metal
Leadlikeness?

Leadlikeness: implemented from
Teague SJ. 1999 Angew. Chem. Int. Ed.
250 ≤ MW ≤ 350
XLOGP ≤ 3.5
Num. rotatable bonds ≤ 7

No; 1 violation:MW<3.0
Synthetic accessibility?

Synthetic accessibility score: from 1 (very easy) to 10 (very difficult)
based on 1024 fragmental contributions (FP2) modulated by size and complexity penaties,
trained on 12'782'590 molecules and tested on 40 external molecules (r2 = 0.94)

2.52

Application In Synthesis of [ 158938-08-0 ]

* All experimental methods are cited from the reference, please refer to the original source for details. We do not guarantee the accuracy of the content in the reference.

  • Downstream synthetic route of [ 158938-08-0 ]

[ 158938-08-0 ] Synthesis Path-Downstream   1~2

  • 1
  • [ 158937-25-8 ]
  • [ 619-58-9 ]
  • [ 158938-08-0 ]
YieldReaction ConditionsOperation in experiment
With sodium carbonate;tetrakis(triphenylphosphine) palladium(0); In ethanol; water; toluene; for 18h;Heating / reflux; 25 g (0,088 mol) 4'-n-Pentoxy[1,1']biphenyl-4-boronsaeure und 21,8 g (0,088 mol) 4-lodbenzoesaeure werden unter Inertgasatmosphaere in einer Mischung aus 270 ml Ethanol, 750 ml Toluol und 132 ml einer 2M Sodaloesung suspendiert, mit 5,08 g (4,4 mmol) Tetrakis(triphenylphosphin)palladium versetzt und im Anschluss daran 18 Stunden unter Rueckfluss erhitzt. Die grau-braune Mischung wird abgekuehlt, angesaeuert und mit Ethylacetat extrahiert. Die organische Phase wird mit Wasser und gesaettigter Kochsalzloesung gewaschen, getrocknet (Natriumsulfat) und ueber Celite filtriert. Nach Entfernen der Loesungsmittel erhaelt man 1,2 g eines Feststoffes, der nach HPLC-Analyse (Vergleich mit Referenzsubstanz) jedoch keinerlei 4"-n-Pentoxy[1,1':4',1"]terphenyl-4-carbonsaeure enthaelt. Eine Bildung von 4-n-Pentoxy[1,1':4',1"]terphenyl-4-carbonsaeure hat auf dem in WO 94/25050 angegebenen Syntheseweg offensichtlich nicht stattgefunden.
  • 2
  • [ 158937-25-8 ]
  • [ 158938-08-0 ]
 

Historical Records

Technical Information

Categories