Home Cart Sign in  
Chemical Structure| 139549-68-1 Chemical Structure| 139549-68-1

Structure of 139549-68-1

Chemical Structure| 139549-68-1

*Storage: Inert atmosphere, room temperature.

1-Dodecylpyridin-1-ium chloride hydrate

CAS No.: 139549-68-1

,97%

4.5 *For Research Use Only !

Cat. No.: A119207 Purity: 97%

Change View

Size Price

US Stock

Global Stock

In Stock

US Stock: ship in 0-1 business day
Global Stock: ship in 5-7 days

    In Stock

    - +

    US Stock: ship in 0-1 business day
    Global Stock: ship in 2 weeks

    • 1-2 Day Shipping
    • High Quality
    • Technical Support
    Product Citations

    Alternative Products

    Product Details of [ 139549-68-1 ]

    CAS No. :139549-68-1
    Formula : C17H32ClNO
    M.W : 301.90
    SMILES Code : CCCCCCCCCCCC[N+]1=CC=CC=C1.[H]O[H].[Cl-]
    MDL No. :MFCD00150002
    InChI Key :BDGGUWSWAKGEGH-UHFFFAOYSA-M
    Pubchem ID :16211802

    Safety of [ 139549-68-1 ]

    GHS Pictogram:
    Signal Word:Warning
    Hazard Statements:H302-H315-H319-H335
    Precautionary Statements:P261-P305+P351+P338

    Computational Chemistry of [ 139549-68-1 ] Show Less

    Physicochemical Properties

    Num. heavy atoms 20
    Num. arom. heavy atoms 6
    Fraction Csp3 0.71
    Num. rotatable bonds 11
    Num. H-bond acceptors 1.0
    Num. H-bond donors 1.0
    Molar Refractivity 91.81
    TPSA ?

    Topological Polar Surface Area: Calculated from
    Ertl P. et al. 2000 J. Med. Chem.

    13.11 Ų

    Lipophilicity

    Log Po/w (iLOGP)?

    iLOGP: in-house physics-based method implemented from
    Daina A et al. 2014 J. Chem. Inf. Model.

    -1.98
    Log Po/w (XLOGP3)?

    XLOGP3: Atomistic and knowledge-based method calculated by
    XLOGP program, version 3.2.2, courtesy of CCBG, Shanghai Institute of Organic Chemistry

    -0.2
    Log Po/w (WLOGP)?

    WLOGP: Atomistic method implemented from
    Wildman SA and Crippen GM. 1999 J. Chem. Inf. Model.

    1.83
    Log Po/w (MLOGP)?

    MLOGP: Topological method implemented from
    Moriguchi I. et al. 1992 Chem. Pharm. Bull.
    Moriguchi I. et al. 1994 Chem. Pharm. Bull.
    Lipinski PA. et al. 2001 Adv. Drug. Deliv. Rev.

    3.27
    Log Po/w (SILICOS-IT)?

    SILICOS-IT: Hybrid fragmental/topological method calculated by
    FILTER-IT program, version 1.0.2, courtesy of SILICOS-IT, http://www.silicos-it.com

    5.02
    Consensus Log Po/w?

    Consensus Log Po/w: Average of all five predictions

    1.59

    Water Solubility

    Log S (ESOL):?

    ESOL: Topological method implemented from
    Delaney JS. 2004 J. Chem. Inf. Model.

    -1.08
    Solubility 25.0 mg/ml ; 0.0828 mol/l
    Class?

    Solubility class: Log S scale
    Insoluble < -10 < Poorly < -6 < Moderately < -4 < Soluble < -2 Very < 0 < Highly

    Very soluble
    Log S (Ali)?

    Ali: Topological method implemented from
    Ali J. et al. 2012 J. Chem. Inf. Model.

    0.38
    Solubility 726.0 mg/ml ; 2.4 mol/l
    Class?

    Solubility class: Log S scale
    Insoluble < -10 < Poorly < -6 < Moderately < -4 < Soluble < -2 Very < 0 < Highly

    Highly soluble
    Log S (SILICOS-IT)?

    SILICOS-IT: Fragmental method calculated by
    FILTER-IT program, version 1.0.2, courtesy of SILICOS-IT, http://www.silicos-it.com

    -6.05
    Solubility 0.00027 mg/ml ; 0.000000895 mol/l
    Class?

    Solubility class: Log S scale
    Insoluble < -10 < Poorly < -6 < Moderately < -4 < Soluble < -2 Very < 0 < Highly

    Poorly soluble

    Pharmacokinetics

    GI absorption?

    Gatrointestinal absorption: according to the white of the BOILED-Egg

    High
    BBB permeant?

    BBB permeation: according to the yolk of the BOILED-Egg

    Yes
    P-gp substrate?

    P-glycoprotein substrate: SVM model built on 1033 molecules (training set)
    and tested on 415 molecules (test set)
    10-fold CV: ACC=0.72 / AUC=0.77
    External: ACC=0.88 / AUC=0.94

    Yes
    CYP1A2 inhibitor?

    Cytochrome P450 1A2 inhibitor: SVM model built on 9145 molecules (training set)
    and tested on 3000 molecules (test set)
    10-fold CV: ACC=0.83 / AUC=0.90
    External: ACC=0.84 / AUC=0.91

    No
    CYP2C19 inhibitor?

    Cytochrome P450 2C19 inhibitor: SVM model built on 9272 molecules (training set)
    and tested on 3000 molecules (test set)
    10-fold CV: ACC=0.80 / AUC=0.86
    External: ACC=0.80 / AUC=0.87

    No
    CYP2C9 inhibitor?

    Cytochrome P450 2C9 inhibitor: SVM model built on 5940 molecules (training set)
    and tested on 2075 molecules (test set)
    10-fold CV: ACC=0.78 / AUC=0.85
    External: ACC=0.71 / AUC=0.81

    No
    CYP2D6 inhibitor?

    Cytochrome P450 2D6 inhibitor: SVM model built on 3664 molecules (training set)
    and tested on 1068 molecules (test set)
    10-fold CV: ACC=0.79 / AUC=0.85
    External: ACC=0.81 / AUC=0.87

    No
    CYP3A4 inhibitor?

    Cytochrome P450 3A4 inhibitor: SVM model built on 7518 molecules (training set)
    and tested on 2579 molecules (test set)
    10-fold CV: ACC=0.77 / AUC=0.85
    External: ACC=0.78 / AUC=0.86

    No
    Log Kp (skin permeation)?

    Skin permeation: QSPR model implemented from
    Potts RO and Guy RH. 1992 Pharm. Res.

    -8.28 cm/s

    Druglikeness

    Lipinski?

    Lipinski (Pfizer) filter: implemented from
    Lipinski CA. et al. 2001 Adv. Drug Deliv. Rev.
    MW ≤ 500
    MLOGP ≤ 4.15
    N or O ≤ 10
    NH or OH ≤ 5

    0.0
    Ghose?

    Ghose filter: implemented from
    Ghose AK. et al. 1999 J. Comb. Chem.
    160 ≤ MW ≤ 480
    -0.4 ≤ WLOGP ≤ 5.6
    40 ≤ MR ≤ 130
    20 ≤ atoms ≤ 70

    None
    Veber?

    Veber (GSK) filter: implemented from
    Veber DF. et al. 2002 J. Med. Chem.
    Rotatable bonds ≤ 10
    TPSA ≤ 140

    1.0
    Egan?

    Egan (Pharmacia) filter: implemented from
    Egan WJ. et al. 2000 J. Med. Chem.
    WLOGP ≤ 5.88
    TPSA ≤ 131.6

    0.0
    Muegge?

    Muegge (Bayer) filter: implemented from
    Muegge I. et al. 2001 J. Med. Chem.
    200 ≤ MW ≤ 600
    -2 ≤ XLOGP ≤ 5
    TPSA ≤ 150
    Num. rings ≤ 7
    Num. carbon > 4
    Num. heteroatoms > 1
    Num. rotatable bonds ≤ 15
    H-bond acc. ≤ 10
    H-bond don. ≤ 5

    0.0
    Bioavailability Score?

    Abbott Bioavailability Score: Probability of F > 10% in rat
    implemented from
    Martin YC. 2005 J. Med. Chem.

    0.55

    Medicinal Chemistry

    PAINS?

    Pan Assay Interference Structures: implemented from
    Baell JB. & Holloway GA. 2010 J. Med. Chem.

    0.0 alert
    Brenk?

    Structural Alert: implemented from
    Brenk R. et al. 2008 ChemMedChem

    1.0 alert: heavy_metal
    Leadlikeness?

    Leadlikeness: implemented from
    Teague SJ. 1999 Angew. Chem. Int. Ed.
    250 ≤ MW ≤ 350
    XLOGP ≤ 3.5
    Num. rotatable bonds ≤ 7

    No; 1 violation:MW<1.0
    Synthetic accessibility?

    Synthetic accessibility score: from 1 (very easy) to 10 (very difficult)
    based on 1024 fragmental contributions (FP2) modulated by size and complexity penaties,
    trained on 12'782'590 molecules and tested on 40 external molecules (r2 = 0.94)

    2.01
     

    Historical Records

    Technical Information

    Categories

    Related Parent Nucleus of
    [ 139549-68-1 ]

    Pyridines

    Chemical Structure| 123-03-5

    A249533 [123-03-5]

    1-Hexadecylpyridin-1-ium chloride

    Similarity: 0.98

    Chemical Structure| 1124-64-7

    A587556 [1124-64-7]

    1-Butylpyridinium Chloride

    Similarity: 0.95

    Chemical Structure| 104-73-4

    A101820 [104-73-4]

    1-Dodecylpyridin-1-ium bromide

    Similarity: 0.93

    Chemical Structure| 70775-75-6

    A110333 [70775-75-6]

    1,1'-(Decane-1,10-diyl)bis(N-octylpyridin-4(1H)-imine) dihydrochloride

    Similarity: 0.84

    Chemical Structure| 65350-59-6

    A769056 [65350-59-6]

    1-Butyl-4-methylpyridin-1-ium bromide

    Similarity: 0.83