Home Cart Sign in  
Chemical Structure| 135034-10-5 Chemical Structure| 135034-10-5

Structure of 135034-10-5

Chemical Structure| 135034-10-5

*Storage: {[sel_prStorage]}

*Shipping: {[sel_prShipping]}

,{[proInfo.pro_purity]}

4.5 *For Research Use Only !

{[proInfo.pro_purity]}
Cat. No.: {[proInfo.prAm]} Purity: {[proInfo.pro_purity]}

Change View

Size Price VIP Price

US Stock

Global Stock

In Stock
{[ item.pr_size ]} Inquiry {[ getRatePrice(item.pr_usd,item.pr_rate,item.mem_rate,item.pr_is_large_size_no_price, item.vip_usd) ]}

US Stock: ship in 0-1 business day
Global Stock: ship in 5-7 days

  • {[ item.pr_size ]}

In Stock

- +

Please Login or Create an Account to: See VIP prices and availability

US Stock: ship in 0-1 business day
Global Stock: ship in 2 weeks

  • 1-2 Day Shipping
  • High Quality
  • Technical Support
Product Citations

Alternative Products

Product Details of [ 135034-10-5 ]

CAS No. :135034-10-5
Formula : C4H2ClIN2
M.W : 240.43
SMILES Code : ClC1=CC=C(N=N1)I
MDL No. :MFCD08275187
InChI Key :PNEPCDPKMXJYIQ-UHFFFAOYSA-N
Pubchem ID :15418839

Safety of [ 135034-10-5 ]

GHS Pictogram:
Signal Word:Warning
Hazard Statements:H315-H319-H335
Precautionary Statements:P261-P305+P351+P338

Computational Chemistry of [ 135034-10-5 ] Show Less

Physicochemical Properties

Num. heavy atoms 8
Num. arom. heavy atoms 6
Fraction Csp3 0.0
Num. rotatable bonds 0
Num. H-bond acceptors 2.0
Num. H-bond donors 0.0
Molar Refractivity 39.76
TPSA ?

Topological Polar Surface Area: Calculated from
Ertl P. et al. 2000 J. Med. Chem.

25.78 Ų

Lipophilicity

Log Po/w (iLOGP)?

iLOGP: in-house physics-based method implemented from
Daina A et al. 2014 J. Chem. Inf. Model.

1.78
Log Po/w (XLOGP3)?

XLOGP3: Atomistic and knowledge-based method calculated by
XLOGP program, version 3.2.2, courtesy of CCBG, Shanghai Institute of Organic Chemistry

1.49
Log Po/w (WLOGP)?

WLOGP: Atomistic method implemented from
Wildman SA and Crippen GM. 1999 J. Chem. Inf. Model.

1.73
Log Po/w (MLOGP)?

MLOGP: Topological method implemented from
Moriguchi I. et al. 1992 Chem. Pharm. Bull.
Moriguchi I. et al. 1994 Chem. Pharm. Bull.
Lipinski PA. et al. 2001 Adv. Drug. Deliv. Rev.

1.57
Log Po/w (SILICOS-IT)?

SILICOS-IT: Hybrid fragmental/topological method calculated by
FILTER-IT program, version 1.0.2, courtesy of SILICOS-IT, http://www.silicos-it.com

2.67
Consensus Log Po/w?

Consensus Log Po/w: Average of all five predictions

1.85

Water Solubility

Log S (ESOL):?

ESOL: Topological method implemented from
Delaney JS. 2004 J. Chem. Inf. Model.

-2.82
Solubility 0.36 mg/ml ; 0.0015 mol/l
Class?

Solubility class: Log S scale
Insoluble < -10 < Poorly < -6 < Moderately < -4 < Soluble < -2 Very < 0 < Highly

Soluble
Log S (Ali)?

Ali: Topological method implemented from
Ali J. et al. 2012 J. Chem. Inf. Model.

-1.64
Solubility 5.52 mg/ml ; 0.023 mol/l
Class?

Solubility class: Log S scale
Insoluble < -10 < Poorly < -6 < Moderately < -4 < Soluble < -2 Very < 0 < Highly

Very soluble
Log S (SILICOS-IT)?

SILICOS-IT: Fragmental method calculated by
FILTER-IT program, version 1.0.2, courtesy of SILICOS-IT, http://www.silicos-it.com

-3.23
Solubility 0.143 mg/ml ; 0.000596 mol/l
Class?

Solubility class: Log S scale
Insoluble < -10 < Poorly < -6 < Moderately < -4 < Soluble < -2 Very < 0 < Highly

Soluble

Pharmacokinetics

GI absorption?

Gatrointestinal absorption: according to the white of the BOILED-Egg

High
BBB permeant?

BBB permeation: according to the yolk of the BOILED-Egg

Yes
P-gp substrate?

P-glycoprotein substrate: SVM model built on 1033 molecules (training set)
and tested on 415 molecules (test set)
10-fold CV: ACC=0.72 / AUC=0.77
External: ACC=0.88 / AUC=0.94

No
CYP1A2 inhibitor?

Cytochrome P450 1A2 inhibitor: SVM model built on 9145 molecules (training set)
and tested on 3000 molecules (test set)
10-fold CV: ACC=0.83 / AUC=0.90
External: ACC=0.84 / AUC=0.91

Yes
CYP2C19 inhibitor?

Cytochrome P450 2C19 inhibitor: SVM model built on 9272 molecules (training set)
and tested on 3000 molecules (test set)
10-fold CV: ACC=0.80 / AUC=0.86
External: ACC=0.80 / AUC=0.87

No
CYP2C9 inhibitor?

Cytochrome P450 2C9 inhibitor: SVM model built on 5940 molecules (training set)
and tested on 2075 molecules (test set)
10-fold CV: ACC=0.78 / AUC=0.85
External: ACC=0.71 / AUC=0.81

No
CYP2D6 inhibitor?

Cytochrome P450 2D6 inhibitor: SVM model built on 3664 molecules (training set)
and tested on 1068 molecules (test set)
10-fold CV: ACC=0.79 / AUC=0.85
External: ACC=0.81 / AUC=0.87

No
CYP3A4 inhibitor?

Cytochrome P450 3A4 inhibitor: SVM model built on 7518 molecules (training set)
and tested on 2579 molecules (test set)
10-fold CV: ACC=0.77 / AUC=0.85
External: ACC=0.78 / AUC=0.86

No
Log Kp (skin permeation)?

Skin permeation: QSPR model implemented from
Potts RO and Guy RH. 1992 Pharm. Res.

-6.71 cm/s

Druglikeness

Lipinski?

Lipinski (Pfizer) filter: implemented from
Lipinski CA. et al. 2001 Adv. Drug Deliv. Rev.
MW ≤ 500
MLOGP ≤ 4.15
N or O ≤ 10
NH or OH ≤ 5

0.0
Ghose?

Ghose filter: implemented from
Ghose AK. et al. 1999 J. Comb. Chem.
160 ≤ MW ≤ 480
-0.4 ≤ WLOGP ≤ 5.6
40 ≤ MR ≤ 130
20 ≤ atoms ≤ 70

None
Veber?

Veber (GSK) filter: implemented from
Veber DF. et al. 2002 J. Med. Chem.
Rotatable bonds ≤ 10
TPSA ≤ 140

0.0
Egan?

Egan (Pharmacia) filter: implemented from
Egan WJ. et al. 2000 J. Med. Chem.
WLOGP ≤ 5.88
TPSA ≤ 131.6

0.0
Muegge?

Muegge (Bayer) filter: implemented from
Muegge I. et al. 2001 J. Med. Chem.
200 ≤ MW ≤ 600
-2 ≤ XLOGP ≤ 5
TPSA ≤ 150
Num. rings ≤ 7
Num. carbon > 4
Num. heteroatoms > 1
Num. rotatable bonds ≤ 15
H-bond acc. ≤ 10
H-bond don. ≤ 5

1.0
Bioavailability Score?

Abbott Bioavailability Score: Probability of F > 10% in rat
implemented from
Martin YC. 2005 J. Med. Chem.

0.55

Medicinal Chemistry

PAINS?

Pan Assay Interference Structures: implemented from
Baell JB. & Holloway GA. 2010 J. Med. Chem.

0.0 alert
Brenk?

Structural Alert: implemented from
Brenk R. et al. 2008 ChemMedChem

1.0 alert: heavy_metal
Leadlikeness?

Leadlikeness: implemented from
Teague SJ. 1999 Angew. Chem. Int. Ed.
250 ≤ MW ≤ 350
XLOGP ≤ 3.5
Num. rotatable bonds ≤ 7

No; 1 violation:MW<1.0
Synthetic accessibility?

Synthetic accessibility score: from 1 (very easy) to 10 (very difficult)
based on 1024 fragmental contributions (FP2) modulated by size and complexity penaties,
trained on 12'782'590 molecules and tested on 40 external molecules (r2 = 0.94)

2.4

Application In Synthesis of [ 135034-10-5 ]

* All experimental methods are cited from the reference, please refer to the original source for details. We do not guarantee the accuracy of the content in the reference.

  • Downstream synthetic route of [ 135034-10-5 ]

[ 135034-10-5 ] Synthesis Path-Downstream   1~3

  • 1
  • [ 135034-10-5 ]
  • [ 151169-74-3 ]
  • [ 927673-83-4 ]
YieldReaction ConditionsOperation in experiment
With potassium fluoride; triphenylphosphonium tetrafluoroborate;tris(dibenzylideneacetone)dipalladium(0) chloroform complex; at 100℃; for 1h; Intermediate 5: 3-Chloro-6-(2,3-dichlorophenyl)pyridazine.To a suspension of intermediate 4 (3.2g, 13.2mmol) in 1,4-dioxane (40ml) was added 2,3- dichlorophenyl boronic acid (2.5g, 13.2mmol), tris(dibenzylideneacetone)-di-palladium(0)- chloroform adduct (725mg, 0.79mmol), potassium fluoride (2.5g, 43.5mmol) and tri-tert- butylphosphine-tetra-fluoroborate (458mg, 1.58mmol), the mixture was then heated to 1000C for 1 hour whilst under argon. The dark crude reaction mixture was then evaporated to dryness. The solid was suspended in ethyl acetate (50ml) and poured through cellite and again evaporated to dryness. The sample was then purified by chromatography (9Og of silica) eluting with 10% ethyl acetate/ petroleum ether 40:60. The title compound was obtained as a white solid (2.2g). 1H-NMR (CDCl3) ? 7.38 (IH, t, J= 8), 7.59-7.63 (3H, m), 7.83 (IH, d, J= 9) LC/MS m/z [MH+] 259 consistent with molecular formula C10H535Cl3N2
With potassium fluoride; tri-tert-butylphosphine-tetrafluoroborate;tris(dibenzylideneacetone)dipalladium(0) chloroform complex; In 1,4-dioxane; at 100℃; for 1h; To a suspension of intermediate 4 (3.2g, 13.2mmol) in 1,4-dioxane (40ml) was added 2,3- dichlorophenyl boronic acid (2.5g, 13.2mmol), tris(dibenzyrideneacetone)-di-palladium(0)- chloroform adduct (725mg, 0.79mmol), potassium fluoride (2.5g, 43.5mmol) and tri-tert- butylphosphine-tetra-fluoroborate (458mg, 1.58mmol), the mixture was then heated to 1000C for 1 hour whilst under argon. The dark crude reaction mixture was then evaporated to dryness. The solid was suspended in ethyl acetate (50ml) and poured through cellite and again evaporated to dryness. The sample was then purified by chromatography (9Og of silica) eluting with 10% ethyl acetate/ petroleum ether 40:60. The title compound was obtained as a white solid (2.2g). 1H-NMR (CDCl3) δ 7.38 (IH, t, J= 8), 7.59-7.63 (3H, m), 7.83 (IH, d, J= 9) LC/MS m/z [MH+] 259 consistent with molecular formula Ci0H535Cl3N2
  • 2
  • [ 135034-10-5 ]
  • [ 761446-44-0 ]
  • [ 943541-20-6 ]
YieldReaction ConditionsOperation in experiment
82% With potassium phosphate; N-benzyl-N,N,N-triethylammonium chloride; triphenylphosphine;palladium diacetate; In tetrahydrofuran; water; at 65℃; for 16h; Step 5: 3-chloro-6-(1-methyl-1/-/-pyrazol-4-yl)pyridazineWater (253 mL) and THF (842 mL) were put in the reaction balloon. The reagents were added one by one to the stirred reaction mixture: potassium phosphate monohydrate 86,2 g (374 mmol) and BTEAC 2,25g (9,88 mmol). Then 3-chloro-6-iodopyhdazine, 45 g (187,2 mmol) and 1-methyl-4-(4,4,5,5-tetramethyl-[1 ,3,2]dioxaborolan-2-yl)-1 H-pyrazole, 46,73g(224,6 mmol) were added and finally triphenylphosphine, 1 ,96g (7,49 mmol) and palladiumdiacetate, 420 mg (1 ,87 mmol) were added. The reaction mixture was heated at 65C for 16h . The reaction mixture was allowed to cool to 600C. Then 935 mL water and301 , 5g sodium chloride were added. The mixture was stirred for 15 minutes and allowed <n="74"/>to cool to 450C. The phases were separated and the organic layer was washed with a solution of 45 g sodium chloride in 374 mL water. The organic layer was separated and stirred with magnesium sulphate (225 g) and charcoal (4,5 g). The mixture was filtered and evaporated. The evaporation residue was co-evaporated with toluene twice and evaporated further till a final volume of 200 ml. This residue was stirred for 16 h at room temperature. The resulting solids were collected by filtration. The solids were dried at reduced pressure affording 29,7 g of the title compound (152,6 mmol, yield 82%).1 H NMR (600 MHz, CHLOROFORM-c/) delta ppm 4.00 (s, 3 H) 7.46 (d, J=8.69 Hz, 1 H) 7.56 (d, J=9.06 Hz, 1 H) 7.98 (s, 1 H) 8.11 (s, 1 H)
With potassium phosphate tribasic trihydrate;bis-triphenylphosphine-palladium(II) chloride; In 1,2-dimethoxyethane; at 80℃; for 3h;Inert atmosphere; Industry scale; 1.2 705 g (3.39 mol) of pinacolyl 1-methyl-1H-pyrazole-4-boronate and 1.44 kg of tripotassium phosphate trihydrate are added to a solution of 815 g (3.39 mol) of 3-chloro-6-iodopyridazine in 3.8 l of 1,2-dimethoxy-ethane. The resultant suspension is heated to 80 C. under nitrogen and with stirring, and 59.5 g (85 mmol) of bis(triphenylphosphine)palladium(II)-chloride are added. The reaction mixture is stirred at 80 C. for 3 hours. The mixture is allowed to cool to room temperature, and 9 l of water are added. The resultant precipitate is filtered off with suction, washed with water and dried in vacuo: 3-chloro-6-(1-methyl-1H-pyrazol-4-yl)pyridazine as brown crystals; ESI 195.
With potassium phosphate tribasic trihydrate;bis-triphenylphosphine-palladium(II) chloride; In 1,2-dimethoxyethane; at 80℃; for 3h;Inert atmosphere; 705 g (3.39 mol) of 1-methyl-1H-pyrazole-4-boronic acid pinacol ester and 1.44 kg of tripotassium phosphate trihydrate are added to a solution of 815 g (3.39 mol) of 3-chloro-6-iodopyridazine in 3.8 l of 1,2-dimethoxy-ethane. The resultant suspension is heated to 80 C. under nitrogen and with stirring, and 59.5 g (85 mmol) of bis(triphenylphosphine)palladium(II) chloride are added. The reaction mixture is stirred at 80 C. for 3 hours. The mixture is allowed to cool to room temperature, and 9 l of water are added. The resultant precipitate is filtered off with suction, washed with water and dried in vacuo: 3-chloro-6-(1-methyl-1H-pyrazol-4-yl)pyridazine as brown crystals; ESI 195.
 

Historical Records

Technical Information

Categories

Related Parent Nucleus of
[ 135034-10-5 ]

Pyridazines

Chemical Structure| 5469-69-2

A261847 [5469-69-2]

3-Amino-6-chloropyridazine

Similarity: 0.64

Chemical Structure| 68206-04-2

A256146 [68206-04-2]

3-Chloro-4-methylpyridazine

Similarity: 0.62

Chemical Structure| 19064-64-3

A180732 [19064-64-3]

3,6-Dichloro-4-methylpyridazine

Similarity: 0.61

Chemical Structure| 1121-79-5

A334396 [1121-79-5]

3-Chloro-6-methylpyridazine

Similarity: 0.61

Chemical Structure| 1837-55-4

A379761 [1837-55-4]

3,5-Dichloropyridazine

Similarity: 0.60