Structure of 132622-98-1
*Storage: {[sel_prStorage]}
*Shipping: {[sel_prShipping]}
The BI-3802 was designed by Boehringer Ingelheim and could be obtained free of charge through the Boehringer Ingelheim open innovation portal opnMe.com, associated with its negative control.
4.5
*For Research Use Only !
Change View
Size | Price | VIP Price | US Stock |
Global Stock |
In Stock | ||
{[ item.pr_size ]} |
Inquiry
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]} {[ getRatePrice(item.pr_usd,item.pr_rate,1,item.pr_is_large_size_no_price, item.discount_usd) ]} {[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]} |
Inquiry {[ getRatePrice(item.pr_usd,item.pr_rate,item.mem_rate,item.pr_is_large_size_no_price, item.vip_usd) ]} | Inquiry {[ item.pr_usastock ]} In Stock Inquiry - | {[ item.pr_chinastock ]} {[ item.pr_remark ]} In Stock 1-2 weeks - Inquiry - | Login | - + | Inquiry |
Please Login or Create an Account to: See VIP prices and availability
US Stock: ship in 0-1 business day
Global Stock: ship in 5-7 days
1-2weeks
Inquiry
{[ getRatePrice(item.pr_usd,item.pr_rate,item.mem_rate,item.pr_is_large_size_no_price, item.vip_usd) ]}
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]}
{[ getRatePrice(item.pr_usd,1,item.mem_rate,item.pr_is_large_size_no_price, item.pr_usd) ]}
Inquiry
{[ getRatePrice(item.pr_usd,item.pr_rate,1,item.pr_is_large_size_no_price, item.vip_usd) ]}
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]}
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]}
In Stock
- +
Please Login or Create an Account to: See VIP prices and availability
US Stock: ship in 0-1 business day
Global Stock: ship in 2 weeks
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
CAS No. : | 132622-98-1 |
Formula : | C10H18N2O4 |
M.W : | 230.26 |
SMILES Code : | O=C([C@@H]1N(C(OC(C)(C)C)=O)C[C@H](N)C1)O |
MDL No. : | MFCD08704542 |
GHS Pictogram: |
![]() |
Signal Word: | Warning |
Hazard Statements: | H315-H319-H335 |
Precautionary Statements: | P261-P305+P351+P338 |
Num. heavy atoms | 16 |
Num. arom. heavy atoms | 0 |
Fraction Csp3 | 0.8 |
Num. rotatable bonds | 4 |
Num. H-bond acceptors | 5.0 |
Num. H-bond donors | 2.0 |
Molar Refractivity | 61.07 |
TPSA ? Topological Polar Surface Area: Calculated from |
92.86 Ų |
Log Po/w (iLOGP)? iLOGP: in-house physics-based method implemented from |
1.68 |
Log Po/w (XLOGP3)? XLOGP3: Atomistic and knowledge-based method calculated by |
-2.28 |
Log Po/w (WLOGP)? WLOGP: Atomistic method implemented from |
0.03 |
Log Po/w (MLOGP)? MLOGP: Topological method implemented from |
-0.07 |
Log Po/w (SILICOS-IT)? SILICOS-IT: Hybrid fragmental/topological method calculated by |
-0.88 |
Consensus Log Po/w? Consensus Log Po/w: Average of all five predictions |
-0.3 |
Log S (ESOL):? ESOL: Topological method implemented from |
0.43 |
Solubility | 624.0 mg/ml ; 2.71 mol/l |
Class? Solubility class: Log S scale |
Highly soluble |
Log S (Ali)? Ali: Topological method implemented from |
0.86 |
Solubility | 1690.0 mg/ml ; 7.32 mol/l |
Class? Solubility class: Log S scale |
Highly soluble |
Log S (SILICOS-IT)? SILICOS-IT: Fragmental method calculated by |
0.21 |
Solubility | 376.0 mg/ml ; 1.63 mol/l |
Class? Solubility class: Log S scale |
Soluble |
GI absorption? Gatrointestinal absorption: according to the white of the BOILED-Egg |
High |
BBB permeant? BBB permeation: according to the yolk of the BOILED-Egg |
No |
P-gp substrate? P-glycoprotein substrate: SVM model built on 1033 molecules (training set) |
No |
CYP1A2 inhibitor? Cytochrome P450 1A2 inhibitor: SVM model built on 9145 molecules (training set) |
No |
CYP2C19 inhibitor? Cytochrome P450 2C19 inhibitor: SVM model built on 9272 molecules (training set) |
No |
CYP2C9 inhibitor? Cytochrome P450 2C9 inhibitor: SVM model built on 5940 molecules (training set) |
No |
CYP2D6 inhibitor? Cytochrome P450 2D6 inhibitor: SVM model built on 3664 molecules (training set) |
No |
CYP3A4 inhibitor? Cytochrome P450 3A4 inhibitor: SVM model built on 7518 molecules (training set) |
No |
Log Kp (skin permeation)? Skin permeation: QSPR model implemented from |
-9.32 cm/s |
Lipinski? Lipinski (Pfizer) filter: implemented from |
0.0 |
Ghose? Ghose filter: implemented from |
None |
Veber? Veber (GSK) filter: implemented from |
0.0 |
Egan? Egan (Pharmacia) filter: implemented from |
0.0 |
Muegge? Muegge (Bayer) filter: implemented from |
1.0 |
Bioavailability Score? Abbott Bioavailability Score: Probability of F > 10% in rat |
0.55 |
PAINS? Pan Assay Interference Structures: implemented from |
0.0 alert |
Brenk? Structural Alert: implemented from |
0.0 alert: heavy_metal |
Leadlikeness? Leadlikeness: implemented from |
No; 1 violation:MW<1.0 |
Synthetic accessibility? Synthetic accessibility score: from 1 (very easy) to 10 (very difficult) |
3.1 |
* All experimental methods are cited from the reference, please refer to the original source for details. We do not guarantee the accuracy of the content in the reference.
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
3 g | With palladium 10% on activated carbon; hydrogen; In methanol; at 20℃; for 24.0h; | To a solution of (2 ?,4 ?)-2-benzyl 1-tert-butyl 4-azidopyrrolidine- l, 2- dicarboxylate (4.49 g, 12.9 mmol) in methanol (30 mL) was added Palladium on carbon (10%, 449 mg). The reaction vessel was evacuated by aspirator and thoroughly purged with hydrogen (three times), and the resulting heterogeneous mixture was stirred under a hydrogen balloon for 24 h at room temperature. The mixture was filtered through a pad of Celite and the pad was washed with methanol. The filtrate was concentrated in vacuo to give (27?,47?)-4-amino-l-(tert- butoxycarbonyl)pyrrolidine-2-carboxylic acid (3 g) which was used in the next step without purification. MS (ESI) m/z 175.1 [M+H-56]+. |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
83% | EXAMPLE 39 STR38 (4R)-1-(tert-Butoxycarbonyl)-4-amino-D-proline (40). The azido benzyl ester (2.65 g, 7.65 mmol) was hydrogenated as for the preparation of 6. This gave 1.47 g (83% yield) of 40, m.p.=263-264 C. (decomp., darkening starting at 222 C.), after crystallization form water/EtOH. 1 H NMR (D2 O) delta1.42/1.46 (m, 9H), 2.11 (m, 1H), 2.68 (m, 1H), 3.70 (m, 2H), 4.00 (m, 2H), 4.18 (dd, J=9.0/3.9 Hz, 1H). Anal. (C10 H18 N2 O4.H2 O). |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
59% | EXAMPLE 40 STR39 (4R)-1-(tert-Butoxycarbonyl)-4-([(p-toluenesulfonyliminoaminomethyl)amino]methyl)-D-proline (41). Amino acid 40 (1.40 g, 5.74 mmol) was converted to 41 as for 13. The residue was recrystallized from EtOAc/Et2 O/hexane to give 1.87 g of 25 (59% yield), m.p.=132-133 C. 1 H NMR (d6 DMSO) delta1.33/1.38 (2s, 9H), 1.74 (m, 1H), 2.34 (s, 3H), 2.97 (m, 1H), 3.33 (m, 1H), 3.63 (m, 1H), 4.08 (m, 2H), 6.65 (bs, 2H), 6.93 (bs, 1H), 7.27 (d, J=8 Hz, 2H), 7.64 (d, J=8 Hz, 2H). |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
EXAMPLE 52 STR50 Glycyl-[(4R)-4-[(iminoaminomethyl)amino]methyl)-D-prolyl]-glycyl-L-aspartyl-L-valine. The title compound was obtained starting with the acid from Example 40 and the tripeptide resin of Example 42. The N-terminal glycine residue was coupled as in Example 42. Cleavage of the peptide from the resin and cleavage of the protective groups, and purification also as described in Example 42 afforded the desired title compound. FAB mass spectrum: calc.: 500; obs.: 501 (M+1). RP-HPLC retention time: 11 min. |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
4 g | With sodium hydrogencarbonate; In tetrahydrofuran; water; at 0 - 20℃; for 2.0h;Inert atmosphere; | To a solution of (27?,47?)-4-amino- l-(tert- butoxycarbonyl)pyrrolidine-2-carboxylic acid (3 g, crude, 12.9 mmol) in Tetrahydrofuran (30 mL), 10% aqueous sodium bicarbonate solution (40 mL) was added. The solution was pre- cooled to 0 C, N-(9-Fluorenylmethoxycarbonyloxy)succinimide (4.37 g, 13 mmol) dissolved in tetrahydrofuran (20 mL) was then added. The reaction mixture was stirred for 2 h at room temperature and concentrated in vacuo to leave a residue which was dissolved in ethyl acetate (100 mL) and treated with saturated aqueous ammonium chloride solution. The mixture was extracted with ethyl acetate (3 xlOO mL) and the organic layers were collected, dried over anhydrous sodium sulfate, filtered, and concentrated to afford a crude residue, which was purified by silica gel flash chromatography (ethyl acetate : methanol = 70 : 30) to afford (2R,4R)- 4-((((9H-fluoren-9-yl)methoxy)carbonyl)amino)-l-(tert-butoxycarbonyl)pyrrolidine-2-carboxylic acid (4 g) as a white solid. 1H NMR (400Hz, CDC13) delta 7.73-7.7 l(m, 2 H), 7.58-7.48 (m, 2 H), 7.37-7.33 (m, 2 H), 7.29-7.26 (m, 2 H), 4.29-4.16 (m, 5 H), 3.69-3.44 (m, 2 H), 2.45 (s, 1 H), 2.31-2.14 (m, 2 H), 1.43 (s, 9 H). |