Structure of 1247885-40-0
*Storage: {[sel_prStorage]}
*Shipping: {[sel_prShipping]}
The BI-3802 was designed by Boehringer Ingelheim and could be obtained free of charge through the Boehringer Ingelheim open innovation portal opnMe.com, associated with its negative control.
4.5
*For Research Use Only !
Change View
Size | Price | VIP Price | US Stock |
Global Stock |
In Stock | ||
{[ item.pr_size ]} |
Inquiry
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]} {[ getRatePrice(item.pr_usd,item.pr_rate,1,item.pr_is_large_size_no_price, item.discount_usd) ]} {[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]} |
Inquiry {[ getRatePrice(item.pr_usd,item.pr_rate,item.mem_rate,item.pr_is_large_size_no_price, item.vip_usd) ]} | Inquiry {[ item.pr_usastock ]} In Stock Inquiry - | {[ item.pr_chinastock ]} {[ item.pr_remark ]} In Stock 1-2 weeks - Inquiry - | Login | - + | Inquiry |
Please Login or Create an Account to: See VIP prices and availability
US Stock: ship in 0-1 business day
Global Stock: ship in 5-7 days
1-2weeks
Inquiry
{[ getRatePrice(item.pr_usd,item.pr_rate,item.mem_rate,item.pr_is_large_size_no_price, item.vip_usd) ]}
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]}
{[ getRatePrice(item.pr_usd,1,item.mem_rate,item.pr_is_large_size_no_price, item.pr_usd) ]}
Inquiry
{[ getRatePrice(item.pr_usd,item.pr_rate,1,item.pr_is_large_size_no_price, item.vip_usd) ]}
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]}
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]}
In Stock
- +
Please Login or Create an Account to: See VIP prices and availability
US Stock: ship in 0-1 business day
Global Stock: ship in 2 weeks
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
CAS No. : | 1247885-40-0 |
Formula : | C7H2F2N2O2 |
M.W : | 184.10 |
SMILES Code : | N#CC1=CC([N+]([O-])=O)=CC(F)=C1F |
MDL No. : | MFCD24038781 |
InChI Key : | SREQFLXKAOEIEW-UHFFFAOYSA-N |
Pubchem ID : | 58077015 |
GHS Pictogram: |
![]() |
Signal Word: | Warning |
Hazard Statements: | H302 |
Precautionary Statements: | P280-P305+P351+P338 |
Num. heavy atoms | 13 |
Num. arom. heavy atoms | 6 |
Fraction Csp3 | 0.0 |
Num. rotatable bonds | 1 |
Num. H-bond acceptors | 5.0 |
Num. H-bond donors | 0.0 |
Molar Refractivity | 39.89 |
TPSA ? Topological Polar Surface Area: Calculated from |
69.61 Ų |
Log Po/w (iLOGP)? iLOGP: in-house physics-based method implemented from |
1.03 |
Log Po/w (XLOGP3)? XLOGP3: Atomistic and knowledge-based method calculated by |
1.67 |
Log Po/w (WLOGP)? WLOGP: Atomistic method implemented from |
2.59 |
Log Po/w (MLOGP)? MLOGP: Topological method implemented from |
1.13 |
Log Po/w (SILICOS-IT)? SILICOS-IT: Hybrid fragmental/topological method calculated by |
0.53 |
Consensus Log Po/w? Consensus Log Po/w: Average of all five predictions |
1.39 |
Log S (ESOL):? ESOL: Topological method implemented from |
-2.31 |
Solubility | 0.904 mg/ml ; 0.00491 mol/l |
Class? Solubility class: Log S scale |
Soluble |
Log S (Ali)? Ali: Topological method implemented from |
-2.75 |
Solubility | 0.33 mg/ml ; 0.00179 mol/l |
Class? Solubility class: Log S scale |
Soluble |
Log S (SILICOS-IT)? SILICOS-IT: Fragmental method calculated by |
-2.42 |
Solubility | 0.695 mg/ml ; 0.00378 mol/l |
Class? Solubility class: Log S scale |
Soluble |
GI absorption? Gatrointestinal absorption: according to the white of the BOILED-Egg |
High |
BBB permeant? BBB permeation: according to the yolk of the BOILED-Egg |
Yes |
P-gp substrate? P-glycoprotein substrate: SVM model built on 1033 molecules (training set) |
No |
CYP1A2 inhibitor? Cytochrome P450 1A2 inhibitor: SVM model built on 9145 molecules (training set) |
No |
CYP2C19 inhibitor? Cytochrome P450 2C19 inhibitor: SVM model built on 9272 molecules (training set) |
No |
CYP2C9 inhibitor? Cytochrome P450 2C9 inhibitor: SVM model built on 5940 molecules (training set) |
No |
CYP2D6 inhibitor? Cytochrome P450 2D6 inhibitor: SVM model built on 3664 molecules (training set) |
No |
CYP3A4 inhibitor? Cytochrome P450 3A4 inhibitor: SVM model built on 7518 molecules (training set) |
No |
Log Kp (skin permeation)? Skin permeation: QSPR model implemented from |
-6.24 cm/s |
Lipinski? Lipinski (Pfizer) filter: implemented from |
0.0 |
Ghose? Ghose filter: implemented from |
None |
Veber? Veber (GSK) filter: implemented from |
0.0 |
Egan? Egan (Pharmacia) filter: implemented from |
0.0 |
Muegge? Muegge (Bayer) filter: implemented from |
1.0 |
Bioavailability Score? Abbott Bioavailability Score: Probability of F > 10% in rat |
0.55 |
PAINS? Pan Assay Interference Structures: implemented from |
0.0 alert |
Brenk? Structural Alert: implemented from |
2.0 alert: heavy_metal |
Leadlikeness? Leadlikeness: implemented from |
No; 1 violation:MW<1.0 |
Synthetic accessibility? Synthetic accessibility score: from 1 (very easy) to 10 (very difficult) |
2.07 |
* All experimental methods are cited from the reference, please refer to the original source for details. We do not guarantee the accuracy of the content in the reference.
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
13% | With sulfuric acid; potassium nitrate; at 0℃; for 3.0h;Inert atmosphere; | 2,3-difluoro-5-nitrobenzonitrile (0272) At 0 C., to a solution of 2,3-difluorobenzonitrile (20.8 g, 149.82 mmol) in sulfuric acid (100 mL) was added potassium nitrate (30.3 g, 299.59 mmol) in portions over 1 h period. The resulting solution was kept stirring for 2 h at 0 C. and then ice water (500 mL) was added. The resulting mixture was extracted with ethyl acetate (300 mL×3). The organic phases were combined, washed with brine and dried over sodium sulfate. The solvent was removed under reduced pressure and the residue was purified by flash chromatography eluting with ethyl acetate in hexane (0% to 10% gradient) to yield 2,3-difluoro-5-nitrobenzonitrile as brown solid (3.6 g, 13%). |
11% | With sulfuric acid; potassium nitrate; at 0℃; for 2.0h; | Potassium nitrate (404 mg, 4.0 mmol) to a solution of 2,3- difluorobenzonitrile (278 mg, 2.0 mmol) in sulfuric acid (2 mL) at 00C. After stirring at 00C for 2 h the reaction was quenched with ice water (5 mL). The mixture was extracted with ethyl acetate (3x10 mL). The organic layer was dried and concentrated to give the crude product which was purified by silica gel (PE : EA = 40 : 1) to give the title compound as a yellow solid. (40 mg, 11%). 1H NMR (400 MHz, CDCl3): delta 8. 25-8.22 (m, IH), 7.69-7.63 (m, IH). LC/MS: m/e = 185 (M+H)+. |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
86% | With iron; acetic acid; In acetonitrile; at 20℃; for 2.0h;Inert atmosphere; | 5-amino-2,3-difluorobenzonitrile (0273) To a solution of <strong>[1247885-40-0]2,3-difluoro-5-nitrobenzonitrile</strong> (920 mg, 5.00 mmol) in acetonitrile (25 mL) was added iron powder (1.96 g, 35.10 mmol) and acetic acid (6.0 g, 99.91 mmol). The resulting mixture was stirred for 2 h at room temperature and the solid that formed in the reaction mixture were removed by filtration. The filtrate was diluted with water (100 mL) and the pH value of the mixture was adjusted to 8 with saturated sodium bicarbonate solution. The resulting mixture was extracted with ethyl acetate (150 mL×2) and the organic phases were combined, washed with brine and dried over sodium sulfate. The solvent was removed under reduced pressure and the residue was purified by a neutral alumina column with ethyl acetate in hexane (0% to 65% gradient) to yield 5-amino-2,3-difluorobenzonitrile as yellow solid (660 mg, 86%). |
48% | With iron; acetic acid; In acetonitrile; at 0 - 20℃; | A solution of <strong>[1247885-40-0]2,3-difluoro-5-nitrobenzonitrile</strong> (35 mg, 0.19 mmol) in acetonitrile (2 mL) was cooled to 00C. Acetic acid (228 mg, 3.80 mmol) and iron filings (75 mg, 1.33 mmol) were added, and the mixture was stirred at room temperature for 2 h. The reaction mixture was filtered and the filtrate was concentrated to give the crude product which was purified by prep-TLC (PE : EA = 2 : 1) to give the title compound as a yellow solid. (14 mg, 48%); LC/MS: m/e = 155 (M+H)+. |
A201513 [172921-32-3]
2,5-Difluoro-4-nitrobenzonitrile
Similarity: 0.87
A201513 [172921-32-3]
2,5-Difluoro-4-nitrobenzonitrile
Similarity: 0.87
A201513 [172921-32-3]
2,5-Difluoro-4-nitrobenzonitrile
Similarity: 0.87
A201513 [172921-32-3]
2,5-Difluoro-4-nitrobenzonitrile
Similarity: 0.87