Home Cart Sign in  
Chemical Structure| 1204-60-0 Chemical Structure| 1204-60-0

Structure of 1204-60-0

Chemical Structure| 1204-60-0

*Storage: {[sel_prStorage]}

*Shipping: {[sel_prShipping]}

,{[proInfo.pro_purity]}

4.5 *For Research Use Only !

{[proInfo.pro_purity]}
Cat. No.: {[proInfo.prAm]} Purity: {[proInfo.pro_purity]}

Change View

Size Price VIP Price

US Stock

Global Stock

In Stock
{[ item.pr_size ]} Inquiry {[ getRatePrice(item.pr_usd,item.pr_rate,item.mem_rate,item.pr_is_large_size_no_price, item.vip_usd) ]}

US Stock: ship in 0-1 business day
Global Stock: ship in 5-7 days

  • {[ item.pr_size ]}

In Stock

- +

Please Login or Create an Account to: See VIP prices and availability

US Stock: ship in 0-1 business day
Global Stock: ship in 2 weeks

  • 1-2 Day Shipping
  • High Quality
  • Technical Support
Product Citations

Alternative Products

Product Details of [ 1204-60-0 ]

CAS No. :1204-60-0
Formula : C13H10O
M.W : 182.22
SMILES Code : O=CC1=CC(C2=CC=CC=C2)=CC=C1
MDL No. :MFCD01740432
InChI Key :KFKSIUOALVIACE-UHFFFAOYSA-N
Pubchem ID :121053

Safety of [ 1204-60-0 ]

GHS Pictogram:
Signal Word:Warning
Hazard Statements:H302-H315-H319-H335
Precautionary Statements:P261-P305+P351+P338

Computational Chemistry of [ 1204-60-0 ] Show Less

Physicochemical Properties

Num. heavy atoms 14
Num. arom. heavy atoms 12
Fraction Csp3 0.0
Num. rotatable bonds 2
Num. H-bond acceptors 1.0
Num. H-bond donors 0.0
Molar Refractivity 57.27
TPSA ?

Topological Polar Surface Area: Calculated from
Ertl P. et al. 2000 J. Med. Chem.

17.07 Ų

Lipophilicity

Log Po/w (iLOGP)?

iLOGP: in-house physics-based method implemented from
Daina A et al. 2014 J. Chem. Inf. Model.

2.04
Log Po/w (XLOGP3)?

XLOGP3: Atomistic and knowledge-based method calculated by
XLOGP program, version 3.2.2, courtesy of CCBG, Shanghai Institute of Organic Chemistry

3.05
Log Po/w (WLOGP)?

WLOGP: Atomistic method implemented from
Wildman SA and Crippen GM. 1999 J. Chem. Inf. Model.

3.17
Log Po/w (MLOGP)?

MLOGP: Topological method implemented from
Moriguchi I. et al. 1992 Chem. Pharm. Bull.
Moriguchi I. et al. 1994 Chem. Pharm. Bull.
Lipinski PA. et al. 2001 Adv. Drug. Deliv. Rev.

3.0
Log Po/w (SILICOS-IT)?

SILICOS-IT: Hybrid fragmental/topological method calculated by
FILTER-IT program, version 1.0.2, courtesy of SILICOS-IT, http://www.silicos-it.com

3.72
Consensus Log Po/w?

Consensus Log Po/w: Average of all five predictions

2.99

Water Solubility

Log S (ESOL):?

ESOL: Topological method implemented from
Delaney JS. 2004 J. Chem. Inf. Model.

-3.39
Solubility 0.0736 mg/ml ; 0.000404 mol/l
Class?

Solubility class: Log S scale
Insoluble < -10 < Poorly < -6 < Moderately < -4 < Soluble < -2 Very < 0 < Highly

Soluble
Log S (Ali)?

Ali: Topological method implemented from
Ali J. et al. 2012 J. Chem. Inf. Model.

-3.07
Solubility 0.153 mg/ml ; 0.000842 mol/l
Class?

Solubility class: Log S scale
Insoluble < -10 < Poorly < -6 < Moderately < -4 < Soluble < -2 Very < 0 < Highly

Soluble
Log S (SILICOS-IT)?

SILICOS-IT: Fragmental method calculated by
FILTER-IT program, version 1.0.2, courtesy of SILICOS-IT, http://www.silicos-it.com

-4.86
Solubility 0.0025 mg/ml ; 0.0000137 mol/l
Class?

Solubility class: Log S scale
Insoluble < -10 < Poorly < -6 < Moderately < -4 < Soluble < -2 Very < 0 < Highly

Moderately soluble

Pharmacokinetics

GI absorption?

Gatrointestinal absorption: according to the white of the BOILED-Egg

High
BBB permeant?

BBB permeation: according to the yolk of the BOILED-Egg

Yes
P-gp substrate?

P-glycoprotein substrate: SVM model built on 1033 molecules (training set)
and tested on 415 molecules (test set)
10-fold CV: ACC=0.72 / AUC=0.77
External: ACC=0.88 / AUC=0.94

No
CYP1A2 inhibitor?

Cytochrome P450 1A2 inhibitor: SVM model built on 9145 molecules (training set)
and tested on 3000 molecules (test set)
10-fold CV: ACC=0.83 / AUC=0.90
External: ACC=0.84 / AUC=0.91

Yes
CYP2C19 inhibitor?

Cytochrome P450 2C19 inhibitor: SVM model built on 9272 molecules (training set)
and tested on 3000 molecules (test set)
10-fold CV: ACC=0.80 / AUC=0.86
External: ACC=0.80 / AUC=0.87

Yes
CYP2C9 inhibitor?

Cytochrome P450 2C9 inhibitor: SVM model built on 5940 molecules (training set)
and tested on 2075 molecules (test set)
10-fold CV: ACC=0.78 / AUC=0.85
External: ACC=0.71 / AUC=0.81

No
CYP2D6 inhibitor?

Cytochrome P450 2D6 inhibitor: SVM model built on 3664 molecules (training set)
and tested on 1068 molecules (test set)
10-fold CV: ACC=0.79 / AUC=0.85
External: ACC=0.81 / AUC=0.87

No
CYP3A4 inhibitor?

Cytochrome P450 3A4 inhibitor: SVM model built on 7518 molecules (training set)
and tested on 2579 molecules (test set)
10-fold CV: ACC=0.77 / AUC=0.85
External: ACC=0.78 / AUC=0.86

No
Log Kp (skin permeation)?

Skin permeation: QSPR model implemented from
Potts RO and Guy RH. 1992 Pharm. Res.

-5.25 cm/s

Druglikeness

Lipinski?

Lipinski (Pfizer) filter: implemented from
Lipinski CA. et al. 2001 Adv. Drug Deliv. Rev.
MW ≤ 500
MLOGP ≤ 4.15
N or O ≤ 10
NH or OH ≤ 5

0.0
Ghose?

Ghose filter: implemented from
Ghose AK. et al. 1999 J. Comb. Chem.
160 ≤ MW ≤ 480
-0.4 ≤ WLOGP ≤ 5.6
40 ≤ MR ≤ 130
20 ≤ atoms ≤ 70

None
Veber?

Veber (GSK) filter: implemented from
Veber DF. et al. 2002 J. Med. Chem.
Rotatable bonds ≤ 10
TPSA ≤ 140

0.0
Egan?

Egan (Pharmacia) filter: implemented from
Egan WJ. et al. 2000 J. Med. Chem.
WLOGP ≤ 5.88
TPSA ≤ 131.6

0.0
Muegge?

Muegge (Bayer) filter: implemented from
Muegge I. et al. 2001 J. Med. Chem.
200 ≤ MW ≤ 600
-2 ≤ XLOGP ≤ 5
TPSA ≤ 150
Num. rings ≤ 7
Num. carbon > 4
Num. heteroatoms > 1
Num. rotatable bonds ≤ 15
H-bond acc. ≤ 10
H-bond don. ≤ 5

2.0
Bioavailability Score?

Abbott Bioavailability Score: Probability of F > 10% in rat
implemented from
Martin YC. 2005 J. Med. Chem.

0.55

Medicinal Chemistry

PAINS?

Pan Assay Interference Structures: implemented from
Baell JB. & Holloway GA. 2010 J. Med. Chem.

0.0 alert
Brenk?

Structural Alert: implemented from
Brenk R. et al. 2008 ChemMedChem

1.0 alert: heavy_metal
Leadlikeness?

Leadlikeness: implemented from
Teague SJ. 1999 Angew. Chem. Int. Ed.
250 ≤ MW ≤ 350
XLOGP ≤ 3.5
Num. rotatable bonds ≤ 7

No; 1 violation:MW<1.0
Synthetic accessibility?

Synthetic accessibility score: from 1 (very easy) to 10 (very difficult)
based on 1024 fragmental contributions (FP2) modulated by size and complexity penaties,
trained on 12'782'590 molecules and tested on 40 external molecules (r2 = 0.94)

1.48

Application In Synthesis of [ 1204-60-0 ]

* All experimental methods are cited from the reference, please refer to the original source for details. We do not guarantee the accuracy of the content in the reference.

  • Downstream synthetic route of [ 1204-60-0 ]

[ 1204-60-0 ] Synthesis Path-Downstream   1~7

  • 2
  • [ 69605-90-9 ]
  • [ 1204-60-0 ]
YieldReaction ConditionsOperation in experiment
With iodosylbenzene; In acetonitrile; at 60℃; for 2h; General procedure: Oxidation of alcohols was typically carried out as follows: a suspension with 5 mg of the synthesized catalyst in acetonitrile (2 mL) was magnetically stirred, and the substrate namely alcohols (0.1 mmol) and PhIO (2.5 equiv.) was then added. The resulting mixture was kept at 60 C with magnetical stirring for a set time. The selectivity and conversion were determined by GC analysis.
  • 3
  • [ 1204-60-0 ]
  • [ 69605-90-9 ]
YieldReaction ConditionsOperation in experiment
64% With sodium tetrahydroborate; In methanol; at 0℃; for 1h;Inert atmosphere; Under nitrogen atmosphere, at 0C, to a stirred solution of NaBH4 (0.56 g, 14.7 mmol) in dry MeOH (10 mL), 3-phenylbenzaldehyde (0.67 g, 3.68 mmol) in dry MeOH (7 mL) was added via a cannula. After lh, the crude was quenched with water and concentrated to dryness. The resulting oil was dissolved in AcOEt and extracted with water. The organic fraction was dried over Na2S04, filtered and subsequently purified by column chromatography using a Teledyne ISCO apparatus, eluting with Cy/TBME (from 100:0 to 50:50) to afford the title compound (0.432 g, 64%) as a pure product. 1HNMR (CDC13): delta 1.62-1.78 (m, 1H), 4.80 (d, J= 6.0, 1H), 7.33-7.75 (m, 9H). 66421
64% With methanol; sodium tetrahydroborate; at 0℃; for 1h;Inert atmosphere; Step 2. Preparation of (3-phenylphenyl)-methanol Under nitrogen atmosphere, at 0 C., to a stirred solution of NaBH4 (0.56 g, 14.7 mmol) in dry MeOH (10 mL), 3-phenylbenzaldehyde (0.67 g, 3.68 mmol) in dry MeOH (7 mL) was added via a cannula. After 1 h, the crude was quenched with water and concentrated to dryness. The resulting oil was dissolved in AcOEt and extracted with water. The organic fraction was dried over Na2SO4, filtered and subsequently purified by column chromatography using a Teledyne ISCO apparatus, eluting with Cy/TBME (from 100:0 to 50:50) to afford the title compound (0.432 g, 64%) as a pure product. 1H NMR (CDCl3): delta 1.62-1.78 (m, 1H), 4.80 (d, J=6.0, 1H), 7.33-7.75 (m, 9H).
With sodium borohydrid; ammonium chloride; In tetrahydrofuran; methanol; (2) To a solution of 5.47 g (30 mmol) of 3-phenylbenzaldehyde in 50 ml of dry methanol and 50 ml of dry tetrahydrofuran was added 1.34 g (32 mmol) of sodium borohydride portionwise with ice-cooling, and further the mixture was stirred for 1 hour with ice-cooling. The reaction mixture was added to 400 ml of an about 5% aqueous solution of ammonium chloride, and the mixture was extracted with tert-butyl methyl ether. The organic layer was dried and concentrated to obtain 5.57 g (30 mmol) of 3-phenylbenzylalcohol.
With 2,4,6-trimethyl-pyridine; hydrogen; In isopropyl alcohol; at 100℃; under 4500.45 Torr; for 24h; General procedure: A typical procedure for the hydrogenation of aldehydesis as follows: aldehyde (1 mmol), Au catalyst, and 2 mL ofsolvent were placed in a modified Fischer-Porter 100 mLglass reactor. The reactor was purged five times with H2,leaving the vessel at the desired pressure. The resultingmixture was vigorously stirred, and the temperature wasmaintained with an oil bath. After the desired time, thecatalyst was removed by centrifugation and the productswere analyzed by GC with an internal standard to determinethe conversion and selectivity

  • 4
  • [ 1204-60-0 ]
  • [ 2065-66-9 ]
  • [ 38383-51-6 ]
  • 5
  • [ 1204-60-0 ]
  • [ 1986-47-6 ]
  • (1S*,2R*)-N-([1,1’-biphenyl]-3-ylmethyl)-2-phenylcyclopropan-1-amine [ No CAS ]
YieldReaction ConditionsOperation in experiment
53% General procedure: Trans-2-phenylcyclopropylamine hydrochloride (1.0 eq.), acetic acid (1.0eq.) and the appropriate aldehyde (0.9 eq.) were dissolved in around bottom flask in 10 mL dry DCE. The reaction mixture was stirred gently at room temperature for 2 h before sodium triacetoxyborohydride (3.0 eq.) was added in small portions to the reaction vessel. The reaction was monitored by TLC and quenched using 10 mL of an aqueous (5%) NaHCO3 solution. The organic layer was separated and the aqueous layer extracted three times with10 mL of DCE. All organic layers were combined, dried over anhydrous Na2SO4, concentrated in vacuo and purified using flash chromatography (silica gel; cyclohexane/ethyl acetate) to give the desired compound.
  • 6
  • [ 1204-60-0 ]
  • [ 14704-31-5 ]
 

Historical Records

Technical Information

Categories