Structure of 1204-60-0
*Storage: {[sel_prStorage]}
*Shipping: {[sel_prShipping]}
The BI-3802 was designed by Boehringer Ingelheim and could be obtained free of charge through the Boehringer Ingelheim open innovation portal opnMe.com, associated with its negative control.
4.5
*For Research Use Only !
Change View
Size | Price | VIP Price | US Stock |
Global Stock |
In Stock | ||
{[ item.pr_size ]} |
Inquiry
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]} {[ getRatePrice(item.pr_usd,item.pr_rate,1,item.pr_is_large_size_no_price, item.discount_usd) ]} {[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]} |
Inquiry {[ getRatePrice(item.pr_usd,item.pr_rate,item.mem_rate,item.pr_is_large_size_no_price, item.vip_usd) ]} | Inquiry {[ item.pr_usastock ]} In Stock Inquiry - | {[ item.pr_chinastock ]} {[ item.pr_remark ]} In Stock 1-2 weeks - Inquiry - | Login | - + | Inquiry |
Please Login or Create an Account to: See VIP prices and availability
US Stock: ship in 0-1 business day
Global Stock: ship in 5-7 days
1-2weeks
Inquiry
{[ getRatePrice(item.pr_usd,item.pr_rate,item.mem_rate,item.pr_is_large_size_no_price, item.vip_usd) ]}
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]}
{[ getRatePrice(item.pr_usd,1,item.mem_rate,item.pr_is_large_size_no_price, item.pr_usd) ]}
Inquiry
{[ getRatePrice(item.pr_usd,item.pr_rate,1,item.pr_is_large_size_no_price, item.vip_usd) ]}
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]}
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]}
In Stock
- +
Please Login or Create an Account to: See VIP prices and availability
US Stock: ship in 0-1 business day
Global Stock: ship in 2 weeks
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
CAS No. : | 1204-60-0 |
Formula : | C13H10O |
M.W : | 182.22 |
SMILES Code : | O=CC1=CC(C2=CC=CC=C2)=CC=C1 |
MDL No. : | MFCD01740432 |
InChI Key : | KFKSIUOALVIACE-UHFFFAOYSA-N |
Pubchem ID : | 121053 |
GHS Pictogram: |
![]() |
Signal Word: | Warning |
Hazard Statements: | H302-H315-H319-H335 |
Precautionary Statements: | P261-P305+P351+P338 |
Num. heavy atoms | 14 |
Num. arom. heavy atoms | 12 |
Fraction Csp3 | 0.0 |
Num. rotatable bonds | 2 |
Num. H-bond acceptors | 1.0 |
Num. H-bond donors | 0.0 |
Molar Refractivity | 57.27 |
TPSA ? Topological Polar Surface Area: Calculated from |
17.07 Ų |
Log Po/w (iLOGP)? iLOGP: in-house physics-based method implemented from |
2.04 |
Log Po/w (XLOGP3)? XLOGP3: Atomistic and knowledge-based method calculated by |
3.05 |
Log Po/w (WLOGP)? WLOGP: Atomistic method implemented from |
3.17 |
Log Po/w (MLOGP)? MLOGP: Topological method implemented from |
3.0 |
Log Po/w (SILICOS-IT)? SILICOS-IT: Hybrid fragmental/topological method calculated by |
3.72 |
Consensus Log Po/w? Consensus Log Po/w: Average of all five predictions |
2.99 |
Log S (ESOL):? ESOL: Topological method implemented from |
-3.39 |
Solubility | 0.0736 mg/ml ; 0.000404 mol/l |
Class? Solubility class: Log S scale |
Soluble |
Log S (Ali)? Ali: Topological method implemented from |
-3.07 |
Solubility | 0.153 mg/ml ; 0.000842 mol/l |
Class? Solubility class: Log S scale |
Soluble |
Log S (SILICOS-IT)? SILICOS-IT: Fragmental method calculated by |
-4.86 |
Solubility | 0.0025 mg/ml ; 0.0000137 mol/l |
Class? Solubility class: Log S scale |
Moderately soluble |
GI absorption? Gatrointestinal absorption: according to the white of the BOILED-Egg |
High |
BBB permeant? BBB permeation: according to the yolk of the BOILED-Egg |
Yes |
P-gp substrate? P-glycoprotein substrate: SVM model built on 1033 molecules (training set) |
No |
CYP1A2 inhibitor? Cytochrome P450 1A2 inhibitor: SVM model built on 9145 molecules (training set) |
Yes |
CYP2C19 inhibitor? Cytochrome P450 2C19 inhibitor: SVM model built on 9272 molecules (training set) |
Yes |
CYP2C9 inhibitor? Cytochrome P450 2C9 inhibitor: SVM model built on 5940 molecules (training set) |
No |
CYP2D6 inhibitor? Cytochrome P450 2D6 inhibitor: SVM model built on 3664 molecules (training set) |
No |
CYP3A4 inhibitor? Cytochrome P450 3A4 inhibitor: SVM model built on 7518 molecules (training set) |
No |
Log Kp (skin permeation)? Skin permeation: QSPR model implemented from |
-5.25 cm/s |
Lipinski? Lipinski (Pfizer) filter: implemented from |
0.0 |
Ghose? Ghose filter: implemented from |
None |
Veber? Veber (GSK) filter: implemented from |
0.0 |
Egan? Egan (Pharmacia) filter: implemented from |
0.0 |
Muegge? Muegge (Bayer) filter: implemented from |
2.0 |
Bioavailability Score? Abbott Bioavailability Score: Probability of F > 10% in rat |
0.55 |
PAINS? Pan Assay Interference Structures: implemented from |
0.0 alert |
Brenk? Structural Alert: implemented from |
1.0 alert: heavy_metal |
Leadlikeness? Leadlikeness: implemented from |
No; 1 violation:MW<1.0 |
Synthetic accessibility? Synthetic accessibility score: from 1 (very easy) to 10 (very difficult) |
1.48 |
* All experimental methods are cited from the reference, please refer to the original source for details. We do not guarantee the accuracy of the content in the reference.
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
With iodosylbenzene; In acetonitrile; at 60℃; for 2h; | General procedure: Oxidation of alcohols was typically carried out as follows: a suspension with 5 mg of the synthesized catalyst in acetonitrile (2 mL) was magnetically stirred, and the substrate namely alcohols (0.1 mmol) and PhIO (2.5 equiv.) was then added. The resulting mixture was kept at 60 C with magnetical stirring for a set time. The selectivity and conversion were determined by GC analysis. |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
64% | With sodium tetrahydroborate; In methanol; at 0℃; for 1h;Inert atmosphere; | Under nitrogen atmosphere, at 0C, to a stirred solution of NaBH4 (0.56 g, 14.7 mmol) in dry MeOH (10 mL), 3-phenylbenzaldehyde (0.67 g, 3.68 mmol) in dry MeOH (7 mL) was added via a cannula. After lh, the crude was quenched with water and concentrated to dryness. The resulting oil was dissolved in AcOEt and extracted with water. The organic fraction was dried over Na2S04, filtered and subsequently purified by column chromatography using a Teledyne ISCO apparatus, eluting with Cy/TBME (from 100:0 to 50:50) to afford the title compound (0.432 g, 64%) as a pure product. 1HNMR (CDC13): delta 1.62-1.78 (m, 1H), 4.80 (d, J= 6.0, 1H), 7.33-7.75 (m, 9H). 66421 |
64% | With methanol; sodium tetrahydroborate; at 0℃; for 1h;Inert atmosphere; | Step 2. Preparation of (3-phenylphenyl)-methanol Under nitrogen atmosphere, at 0 C., to a stirred solution of NaBH4 (0.56 g, 14.7 mmol) in dry MeOH (10 mL), 3-phenylbenzaldehyde (0.67 g, 3.68 mmol) in dry MeOH (7 mL) was added via a cannula. After 1 h, the crude was quenched with water and concentrated to dryness. The resulting oil was dissolved in AcOEt and extracted with water. The organic fraction was dried over Na2SO4, filtered and subsequently purified by column chromatography using a Teledyne ISCO apparatus, eluting with Cy/TBME (from 100:0 to 50:50) to afford the title compound (0.432 g, 64%) as a pure product. 1H NMR (CDCl3): delta 1.62-1.78 (m, 1H), 4.80 (d, J=6.0, 1H), 7.33-7.75 (m, 9H). |
With sodium borohydrid; ammonium chloride; In tetrahydrofuran; methanol; | (2) To a solution of 5.47 g (30 mmol) of 3-phenylbenzaldehyde in 50 ml of dry methanol and 50 ml of dry tetrahydrofuran was added 1.34 g (32 mmol) of sodium borohydride portionwise with ice-cooling, and further the mixture was stirred for 1 hour with ice-cooling. The reaction mixture was added to 400 ml of an about 5% aqueous solution of ammonium chloride, and the mixture was extracted with tert-butyl methyl ether. The organic layer was dried and concentrated to obtain 5.57 g (30 mmol) of 3-phenylbenzylalcohol. |
With 2,4,6-trimethyl-pyridine; hydrogen; In isopropyl alcohol; at 100℃; under 4500.45 Torr; for 24h; | General procedure: A typical procedure for the hydrogenation of aldehydesis as follows: aldehyde (1 mmol), Au catalyst, and 2 mL ofsolvent were placed in a modified Fischer-Porter 100 mLglass reactor. The reactor was purged five times with H2,leaving the vessel at the desired pressure. The resultingmixture was vigorously stirred, and the temperature wasmaintained with an oil bath. After the desired time, thecatalyst was removed by centrifugation and the productswere analyzed by GC with an internal standard to determinethe conversion and selectivity |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
53% | General procedure: Trans-2-phenylcyclopropylamine hydrochloride (1.0 eq.), acetic acid (1.0eq.) and the appropriate aldehyde (0.9 eq.) were dissolved in around bottom flask in 10 mL dry DCE. The reaction mixture was stirred gently at room temperature for 2 h before sodium triacetoxyborohydride (3.0 eq.) was added in small portions to the reaction vessel. The reaction was monitored by TLC and quenched using 10 mL of an aqueous (5%) NaHCO3 solution. The organic layer was separated and the aqueous layer extracted three times with10 mL of DCE. All organic layers were combined, dried over anhydrous Na2SO4, concentrated in vacuo and purified using flash chromatography (silica gel; cyclohexane/ethyl acetate) to give the desired compound. |