Structure of 1151989-04-6
*Storage: {[sel_prStorage]}
*Shipping: {[sel_prShipping]}
The BI-3802 was designed by Boehringer Ingelheim and could be obtained free of charge through the Boehringer Ingelheim open innovation portal opnMe.com, associated with its negative control.
4.5
*For Research Use Only !
Change View
Size | Price | VIP Price | US Stock |
Global Stock |
In Stock | ||
{[ item.pr_size ]} |
Inquiry
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]} {[ getRatePrice(item.pr_usd,item.pr_rate,1,item.pr_is_large_size_no_price, item.discount_usd) ]} {[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]} |
Inquiry {[ getRatePrice(item.pr_usd,item.pr_rate,item.mem_rate,item.pr_is_large_size_no_price, item.vip_usd) ]} | Inquiry {[ item.pr_usastock ]} In Stock Inquiry - | {[ item.pr_chinastock ]} {[ item.pr_remark ]} In Stock 1-2 weeks - Inquiry - | Login | - + | Inquiry |
Please Login or Create an Account to: See VIP prices and availability
US Stock: ship in 0-1 business day
Global Stock: ship in 5-7 days
1-2weeks
Inquiry
{[ getRatePrice(item.pr_usd,item.pr_rate,item.mem_rate,item.pr_is_large_size_no_price, item.vip_usd) ]}
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]}
{[ getRatePrice(item.pr_usd,1,item.mem_rate,item.pr_is_large_size_no_price, item.pr_usd) ]}
Inquiry
{[ getRatePrice(item.pr_usd,item.pr_rate,1,item.pr_is_large_size_no_price, item.vip_usd) ]}
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]}
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]}
In Stock
- +
Please Login or Create an Account to: See VIP prices and availability
US Stock: ship in 0-1 business day
Global Stock: ship in 2 weeks
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
CAS No. : | 1151989-04-6 |
Formula : | C19H14N2O5S2 |
M.W : | 414.45 |
SMILES Code : | O=C(OCC1=CC=C(SSC2=NC=CC=C2)C=C1)OC3=CC=C([N+]([O-])=O)C=C3 |
MDL No. : | MFCD32214872 |
GHS Pictogram: |
![]() |
Signal Word: | Warning |
Hazard Statements: | H302-H315-H319-H335 |
Precautionary Statements: | P261-P305+P351+P338 |
Num. heavy atoms | 28 |
Num. arom. heavy atoms | 18 |
Fraction Csp3 | 0.05 |
Num. rotatable bonds | 9 |
Num. H-bond acceptors | 6.0 |
Num. H-bond donors | 0.0 |
Molar Refractivity | 108.68 |
TPSA ? Topological Polar Surface Area: Calculated from |
144.84 Ų |
Log Po/w (iLOGP)? iLOGP: in-house physics-based method implemented from |
2.87 |
Log Po/w (XLOGP3)? XLOGP3: Atomistic and knowledge-based method calculated by |
4.77 |
Log Po/w (WLOGP)? WLOGP: Atomistic method implemented from |
5.35 |
Log Po/w (MLOGP)? MLOGP: Topological method implemented from |
2.26 |
Log Po/w (SILICOS-IT)? SILICOS-IT: Hybrid fragmental/topological method calculated by |
1.89 |
Consensus Log Po/w? Consensus Log Po/w: Average of all five predictions |
3.43 |
Log S (ESOL):? ESOL: Topological method implemented from |
-5.3 |
Solubility | 0.00209 mg/ml ; 0.00000505 mol/l |
Class? Solubility class: Log S scale |
Moderately soluble |
Log S (Ali)? Ali: Topological method implemented from |
-7.54 |
Solubility | 0.0000119 mg/ml ; 0.0000000287 mol/l |
Class? Solubility class: Log S scale |
Poorly soluble |
Log S (SILICOS-IT)? SILICOS-IT: Fragmental method calculated by |
-6.4 |
Solubility | 0.000163 mg/ml ; 0.000000394 mol/l |
Class? Solubility class: Log S scale |
Poorly soluble |
GI absorption? Gatrointestinal absorption: according to the white of the BOILED-Egg |
Low |
BBB permeant? BBB permeation: according to the yolk of the BOILED-Egg |
No |
P-gp substrate? P-glycoprotein substrate: SVM model built on 1033 molecules (training set) |
No |
CYP1A2 inhibitor? Cytochrome P450 1A2 inhibitor: SVM model built on 9145 molecules (training set) |
Yes |
CYP2C19 inhibitor? Cytochrome P450 2C19 inhibitor: SVM model built on 9272 molecules (training set) |
Yes |
CYP2C9 inhibitor? Cytochrome P450 2C9 inhibitor: SVM model built on 5940 molecules (training set) |
Yes |
CYP2D6 inhibitor? Cytochrome P450 2D6 inhibitor: SVM model built on 3664 molecules (training set) |
No |
CYP3A4 inhibitor? Cytochrome P450 3A4 inhibitor: SVM model built on 7518 molecules (training set) |
Yes |
Log Kp (skin permeation)? Skin permeation: QSPR model implemented from |
-5.44 cm/s |
Lipinski? Lipinski (Pfizer) filter: implemented from |
0.0 |
Ghose? Ghose filter: implemented from |
None |
Veber? Veber (GSK) filter: implemented from |
1.0 |
Egan? Egan (Pharmacia) filter: implemented from |
1.0 |
Muegge? Muegge (Bayer) filter: implemented from |
0.0 |
Bioavailability Score? Abbott Bioavailability Score: Probability of F > 10% in rat |
0.55 |
PAINS? Pan Assay Interference Structures: implemented from |
0.0 alert |
Brenk? Structural Alert: implemented from |
4.0 alert: heavy_metal |
Leadlikeness? Leadlikeness: implemented from |
No; 1 violation:MW<3.0 |
Synthetic accessibility? Synthetic accessibility score: from 1 (very easy) to 10 (very difficult) |
3.08 |
* All experimental methods are cited from the reference, please refer to the original source for details. We do not guarantee the accuracy of the content in the reference.
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
With dmap; In dichloromethane; at 20℃; for 12.0h; | Synthesis of compound 8.; A solution of the disulfide 4 (see Senter, P. D.; Pearce, W. E.; Greenfield, R. S. /. Org Chem. 1990, 55, 2975-2978) (7 mg, 28 mumol) in dry dichloromethane (2 mL) was added to a stirred solution of bis(4-nitrophenyl) carbonate (12.8 mg, 42 mumol) and 4-(dimethylamino) pyridine (10.3 mg, 84 mumol) in dry <n="54"/>dichloromethane (2 mL). After being stirred at room temperature for 12 h, paclitaxel (47.8 mg, 56 mumol) was added. The reaction mixture was allowed to stir at room temperature for another 12 h (see Fardis, M.; Pyun, H.-J.; Tario, J.; Jin, H.; Kim, C. U.; Ruckman, J.; Lin, Y.; Green, L.; Hicke, B. Bioorg. Med. Chem. 2003, 11, 5051-5058; Liu, C; Schilling, J. K.; Ravindra, R.; Bane, S.; Kingston, D. G. I. Bioorg. Med. Chem. 2004, 12, 6147-6161.) Workup as described above and purification by preparative TLC (30% EtOAc/hexanes) afforded compound 8 (25.3 mg, 80%): 1H NMR (CDCl3). delta 8.48 (IH, d, / = 4.6 Hz), 8.13 (2H, d, J = 8.0 Hz), 7.71 (2H, d, / = 8.3 Hz), 7.25-7.65 (17H, m), 7.13 (IH, br dd, / = 5.1, 3.3 Hz), 6.88 (IH, d, J = 9.2 Hz), 6.29 (2H, br s), 5.97 (IH, br d, / = 9.2 Hz), 5.68 (IH, d, / = 7.0 Hz), 5.42 (IH, br s), 5.13 (IH, d, / = 12.3 Hz), 5.09 (IH, d, / = 12.3 Hz), 4.97 (IH, d, / = 9.4 Hz), 4.43 (IH, dd, J = 10.6, 6.9 Hz), 4.31 (IH, d, / = 8.5 Hz), 4.20 (IH, d, / = 8.5 Hz), 3.80 (IH, d, J = 7.0 Hz), 2.56 (IH, m), 2.44 (3H, s), 2.39 (IH, dd, J = 15.4, 9.4 Hz), 2.23 (3H, s), 2.19 (IH, dd, J = 15.4, 8.7 Hz), 1.91 (3H, s), 1.88 (IH, m), 1.68 (3H, s), 1.25 (3H, s), 1.13 (3H, s); 13C NMR (CDCl3) delta 203.8, 171.3, 169.8, 167.8, 167.1, 167.1, 159.2,154.0, 149.6, 142.6, 137.4, 136.6, 133.6, 133.4, 133.4, 132.8, 132.1, 130.2, 129.1, 129.1,129.1, 128.7, 128.7, 128.5, 127.4, 127.1, 126.5, 121.1, 119.8, 84.4, 81.1, 79.2, 77.2, 76.9, 76.4, 75.6, 75.1, 72.1, 72.1, 70.0, 58.5, 52.7, 45.6, 43.2, 35.6, 35.6, 26.8, 22.7, 22.2, 20.8, 14.8, 9.6; HRFABMS m/z 1129.3433 [M + H+] (calcd for C60H6IN2Oi6S2, 1129.3463). |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
With dmap; In dichloromethane; at 20℃; for 12.0h; | EXAMPLE 1.3. Synthesis of an M3 type compound of substituent 1 (8 in this Example); The carbonate 7 was prepared by reacting the disulfide 4 with bis(4-nitrophenyl) carbonate (Fardis, M.; Pyun, H.-J.; Tario, J.; Jin, H.; Kim, C. U.; Ruckman, J.; Lin, Y.; Green, L.; Hicke, B. Bioorg. Med. Chem. 2003, 11, 5051-5058.). Treatment of paclitaxel with 7 gave the M3 type paclitaxel disulfide 8 (Liu, C; Schilling, J. K.; Ravindra, R.; Bane, S.; Kingston, D. G. I. Bioorg. Med. Chem. 2004, 12, 6147-6161.); Synthesis of compound 8.; A solution of the disulfide 4 (see Senter, P. D.; Pearce, W. E.; Greenfield, R. S. /. Org Chem. 1990, 55, 2975-2978) (7 mg, 28 mumol) in dry dichloromethane (2 mL) was added to a stirred solution of bis(4-nitrophenyl) carbonate (12.8 mg, 42 mumol) and 4-(dimethylamino) pyridine (10.3 mg, 84 mumol) in dry <n="54"/>dichloromethane (2 mL). After being stirred at room temperature for 12 h, paclitaxel (47.8 mg, 56 mumol) was added. The reaction mixture was allowed to stir at room temperature for another 12 h (see Fardis, M.; Pyun, H.-J.; Tario, J.; Jin, H.; Kim, C. U.; Ruckman, J.; Lin, Y.; Green, L.; Hicke, B. Bioorg. Med. Chem. 2003, 11, 5051-5058; Liu, C; Schilling, J. K.; Ravindra, R.; Bane, S.; Kingston, D. G. I. Bioorg. Med. Chem. 2004, 12, 6147-6161.) Workup as described above and purification by preparative TLC (30% EtOAc/hexanes) afforded compound 8 (25.3 mg, 80%): 1H NMR (CDCl3). delta 8.48 (IH, d, / = 4.6 Hz), 8.13 (2H, d, J = 8.0 Hz), 7.71 (2H, d, / = 8.3 Hz), 7.25-7.65 (17H, m), 7.13 (IH, br dd, / = 5.1, 3.3 Hz), 6.88 (IH, d, J = 9.2 Hz), 6.29 (2H, br s), 5.97 (IH, br d, / = 9.2 Hz), 5.68 (IH, d, / = 7.0 Hz), 5.42 (IH, br s), 5.13 (IH, d, / = 12.3 Hz), 5.09 (IH, d, / = 12.3 Hz), 4.97 (IH, d, / = 9.4 Hz), 4.43 (IH, dd, J = 10.6, 6.9 Hz), 4.31 (IH, d, / = 8.5 Hz), 4.20 (IH, d, / = 8.5 Hz), 3.80 (IH, d, J = 7.0 Hz), 2.56 (IH, m), 2.44 (3H, s), 2.39 (IH, dd, J = 15.4, 9.4 Hz), 2.23 (3H, s), 2.19 (IH, dd, J = 15.4, 8.7 Hz), 1.91 (3H, s), 1.88 (IH, m), 1.68 (3H, s), 1.25 (3H, s), 1.13 (3H, s); 13C NMR (CDCl3) delta 203.8, 171.3, 169.8, 167.8, 167.1, 167.1, 159.2,154.0, 149.6, 142.6, 137.4, 136.6, 133.6, 133.4, 133.4, 132.8, 132.1, 130.2, 129.1, 129.1,129.1, 128.7, 128.7, 128.5, 127.4, 127.1, 126.5, 121.1, 119.8, 84.4, 81.1, 79.2, 77.2, 76.9, 76.4, 75.6, 75.1, 72.1, 72.1, 70.0, 58.5, 52.7, 45.6, 43.2, 35.6, 35.6, 26.8, 22.7, 22.2, 20.8, 14.8, 9.6; HRFABMS m/z 1129.3433 [M + H+] (calcd for C60H6IN2Oi6S2, 1129.3463). |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
91% | With pyridine; dmap; In dichloromethane; at 0 - 20℃; for 2.0h; | To a stirred solution of (4-(pyridin-2-yldisulfanyl)phenyl)methanol (0.40 g, 1.60 mmol) in CH2CI2 (10 mL) were added 4-nitrophenyl chloroformate (0.65 g, 3.2 mmol), pyridine (0.25 mL, 3.20 mmol), catalytic amount of DMAP (0.005 g ) at 0C. The mixture was allowed to stir for 2 h at room temperature. The reaction mixture was quenched with 1.5 N HC1 solution. The organic layer was separated and washed with brine, dried over anhydrous Na2SCri and concentrated. The crude product was purified by columnchromatography (S1O2, 20-30% of EtO Ac/hexanes) to afford (4-nitrophenyl) [4-(2- pyridyldisulfanyl)phenyl] methyl carbonate as a colourless liquid (600 mg, 91% yield); MS m/z 415.0 [M+H]+ |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
34% | Synthesis of Compound 9:Doxorubicin hydrochloride in the dark at room temperature (DOX·HCl, 127 mg, 0.22 mmol, 1 eq)Dissolved into dry dimethylformamide (4 mL),Triethylamine (34 mg, 46 muL, 0.33 mmol, 1.5 eq) was added slowly.The reaction solution was stirred at room temperature for 0.5 hour.Compound 8 (95 mg, 0.23 mmol, 1.05 eq) was added slowly,A solution of traces of 4-dimethylaminopyridine in dimethylformamide (2 mL).The reaction was carried out in the dark at room temperature and poured directly into water. The precipitated solid was filtered, washed with purified water and dried under vacuum.The crude product was further purified by rapid preparative column chromatography (methanol: dichloromethane, 1:50 to 1:10 v/v)Obtained as a dark red solid (61 mg, 34%). |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
59% | With benzotriazol-1-ol; triethylamine; In tetrahydrofuran; at 20℃; for 16.0h;Inert atmosphere; | To a stirred solution of 2-[4-(methylaminomethyl)phenyl]-3,l0- diazatricyclo[6.4.1.04,13] trideca-l,4(l3),5,7-tetraen-9-one;phosphoric acid (1.00 g, 3.09 mmol) in THF (20 mL) under N2 was added TEA (1.40 mL, 3.04 mmol), HOBt (0.21 g, 1.50 mmol) and 4-nitrophenyl (4-(pyridin-2-yldisulfaneyl)benzyl) carbonate (1.40 g, 3.40 mmol). The mixture was stirred under N2 for 16 h at room temperature. The reaction mixture was concentrated and the crude purified by flash chromatography (S1O2, 0-5% MeOH/CTBCh to afford [4-(2-pyridyldisulfanyl)phenyl]methyl N-[[4-(6-fluoro-9-oxo-3,l0- diazatricyclo[6.4.1.04,13] trideca-l,4,6,8(l3)-tetraen-2-yl)phenyl]methyl]-N-methyl- carbamate as a colourless solid (1.13 g, 59% yield). MS m/z 599.0 (M+H)+. |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
37% | Synthesis of Compound 11:Aleclon hemifumarate (121 mg, 0.22 mmol, 1 eq) at room temperature in the darkDissolved in dry dimethylformamide (4 mL),Triethylamine (34 mg, 46 muL, 0.33 mmol, 1.5 eq) was added slowlyStir for half an hour,Compound 8 (95 mg, 0.23 mmol, 1.05 eq) and then slowly addedTrace of 4-dimethylaminopyridine in dimethylformamide(2mL) solution,The mixture was stirred at room temperature under an argon atmosphere overnight. The solvent is removed under reduced pressure and subjected to rapid preparative column chromatography.One-step purification (methanol: methylene chloride, 1/50 to 1/10 v/v) afforded white solid (yield: 67 mg, 37%). |