Home Cart Sign in  
Chemical Structure| 107259-05-2 Chemical Structure| 107259-05-2

Structure of 107259-05-2

Chemical Structure| 107259-05-2

*Storage: {[sel_prStorage]}

*Shipping: {[sel_prShipping]}

,{[proInfo.pro_purity]}

4.5 *For Research Use Only !

{[proInfo.pro_purity]}
Cat. No.: {[proInfo.prAm]} Purity: {[proInfo.pro_purity]}

Change View

Size Price VIP Price

US Stock

Global Stock

In Stock
{[ item.pr_size ]} Inquiry {[ getRatePrice(item.pr_usd,item.pr_rate,item.mem_rate,item.pr_is_large_size_no_price, item.vip_usd) ]}

US Stock: ship in 0-1 business day
Global Stock: ship in 5-7 days

  • {[ item.pr_size ]}

In Stock

- +

Please Login or Create an Account to: See VIP prices and availability

US Stock: ship in 0-1 business day
Global Stock: ship in 2 weeks

  • 1-2 Day Shipping
  • High Quality
  • Technical Support
Product Citations

Alternative Products

Product Details of [ 107259-05-2 ]

CAS No. :107259-05-2
Formula : C11H19NO4
M.W : 229.27
SMILES Code : CCOC(=O)C1(CC1)NC(=O)OC(C)(C)C
MDL No. :MFCD11845623
InChI Key :VBXFYABGAOGXRS-UHFFFAOYSA-N
Pubchem ID :10242916

Safety of [ 107259-05-2 ]

GHS Pictogram:
Signal Word:Warning
Hazard Statements:H302-H315-H319-H332-H335
Precautionary Statements:P261-P280-P305+P351+P338

Computational Chemistry of [ 107259-05-2 ] Show Less

Physicochemical Properties

Num. heavy atoms 16
Num. arom. heavy atoms 0
Fraction Csp3 0.82
Num. rotatable bonds 7
Num. H-bond acceptors 4.0
Num. H-bond donors 1.0
Molar Refractivity 58.71
TPSA ?

Topological Polar Surface Area: Calculated from
Ertl P. et al. 2000 J. Med. Chem.

64.63 Ų

Lipophilicity

Log Po/w (iLOGP)?

iLOGP: in-house physics-based method implemented from
Daina A et al. 2014 J. Chem. Inf. Model.

2.69
Log Po/w (XLOGP3)?

XLOGP3: Atomistic and knowledge-based method calculated by
XLOGP program, version 3.2.2, courtesy of CCBG, Shanghai Institute of Organic Chemistry

1.56
Log Po/w (WLOGP)?

WLOGP: Atomistic method implemented from
Wildman SA and Crippen GM. 1999 J. Chem. Inf. Model.

1.54
Log Po/w (MLOGP)?

MLOGP: Topological method implemented from
Moriguchi I. et al. 1992 Chem. Pharm. Bull.
Moriguchi I. et al. 1994 Chem. Pharm. Bull.
Lipinski PA. et al. 2001 Adv. Drug. Deliv. Rev.

1.03
Log Po/w (SILICOS-IT)?

SILICOS-IT: Hybrid fragmental/topological method calculated by
FILTER-IT program, version 1.0.2, courtesy of SILICOS-IT, http://www.silicos-it.com

1.3
Consensus Log Po/w?

Consensus Log Po/w: Average of all five predictions

1.62

Water Solubility

Log S (ESOL):?

ESOL: Topological method implemented from
Delaney JS. 2004 J. Chem. Inf. Model.

-1.78
Solubility 3.78 mg/ml ; 0.0165 mol/l
Class?

Solubility class: Log S scale
Insoluble < -10 < Poorly < -6 < Moderately < -4 < Soluble < -2 Very < 0 < Highly

Very soluble
Log S (Ali)?

Ali: Topological method implemented from
Ali J. et al. 2012 J. Chem. Inf. Model.

-2.53
Solubility 0.681 mg/ml ; 0.00297 mol/l
Class?

Solubility class: Log S scale
Insoluble < -10 < Poorly < -6 < Moderately < -4 < Soluble < -2 Very < 0 < Highly

Soluble
Log S (SILICOS-IT)?

SILICOS-IT: Fragmental method calculated by
FILTER-IT program, version 1.0.2, courtesy of SILICOS-IT, http://www.silicos-it.com

-2.14
Solubility 1.66 mg/ml ; 0.00726 mol/l
Class?

Solubility class: Log S scale
Insoluble < -10 < Poorly < -6 < Moderately < -4 < Soluble < -2 Very < 0 < Highly

Soluble

Pharmacokinetics

GI absorption?

Gatrointestinal absorption: according to the white of the BOILED-Egg

High
BBB permeant?

BBB permeation: according to the yolk of the BOILED-Egg

Yes
P-gp substrate?

P-glycoprotein substrate: SVM model built on 1033 molecules (training set)
and tested on 415 molecules (test set)
10-fold CV: ACC=0.72 / AUC=0.77
External: ACC=0.88 / AUC=0.94

No
CYP1A2 inhibitor?

Cytochrome P450 1A2 inhibitor: SVM model built on 9145 molecules (training set)
and tested on 3000 molecules (test set)
10-fold CV: ACC=0.83 / AUC=0.90
External: ACC=0.84 / AUC=0.91

No
CYP2C19 inhibitor?

Cytochrome P450 2C19 inhibitor: SVM model built on 9272 molecules (training set)
and tested on 3000 molecules (test set)
10-fold CV: ACC=0.80 / AUC=0.86
External: ACC=0.80 / AUC=0.87

No
CYP2C9 inhibitor?

Cytochrome P450 2C9 inhibitor: SVM model built on 5940 molecules (training set)
and tested on 2075 molecules (test set)
10-fold CV: ACC=0.78 / AUC=0.85
External: ACC=0.71 / AUC=0.81

No
CYP2D6 inhibitor?

Cytochrome P450 2D6 inhibitor: SVM model built on 3664 molecules (training set)
and tested on 1068 molecules (test set)
10-fold CV: ACC=0.79 / AUC=0.85
External: ACC=0.81 / AUC=0.87

No
CYP3A4 inhibitor?

Cytochrome P450 3A4 inhibitor: SVM model built on 7518 molecules (training set)
and tested on 2579 molecules (test set)
10-fold CV: ACC=0.77 / AUC=0.85
External: ACC=0.78 / AUC=0.86

No
Log Kp (skin permeation)?

Skin permeation: QSPR model implemented from
Potts RO and Guy RH. 1992 Pharm. Res.

-6.59 cm/s

Druglikeness

Lipinski?

Lipinski (Pfizer) filter: implemented from
Lipinski CA. et al. 2001 Adv. Drug Deliv. Rev.
MW ≤ 500
MLOGP ≤ 4.15
N or O ≤ 10
NH or OH ≤ 5

0.0
Ghose?

Ghose filter: implemented from
Ghose AK. et al. 1999 J. Comb. Chem.
160 ≤ MW ≤ 480
-0.4 ≤ WLOGP ≤ 5.6
40 ≤ MR ≤ 130
20 ≤ atoms ≤ 70

None
Veber?

Veber (GSK) filter: implemented from
Veber DF. et al. 2002 J. Med. Chem.
Rotatable bonds ≤ 10
TPSA ≤ 140

0.0
Egan?

Egan (Pharmacia) filter: implemented from
Egan WJ. et al. 2000 J. Med. Chem.
WLOGP ≤ 5.88
TPSA ≤ 131.6

0.0
Muegge?

Muegge (Bayer) filter: implemented from
Muegge I. et al. 2001 J. Med. Chem.
200 ≤ MW ≤ 600
-2 ≤ XLOGP ≤ 5
TPSA ≤ 150
Num. rings ≤ 7
Num. carbon > 4
Num. heteroatoms > 1
Num. rotatable bonds ≤ 15
H-bond acc. ≤ 10
H-bond don. ≤ 5

0.0
Bioavailability Score?

Abbott Bioavailability Score: Probability of F > 10% in rat
implemented from
Martin YC. 2005 J. Med. Chem.

0.55

Medicinal Chemistry

PAINS?

Pan Assay Interference Structures: implemented from
Baell JB. & Holloway GA. 2010 J. Med. Chem.

0.0 alert
Brenk?

Structural Alert: implemented from
Brenk R. et al. 2008 ChemMedChem

1.0 alert: heavy_metal
Leadlikeness?

Leadlikeness: implemented from
Teague SJ. 1999 Angew. Chem. Int. Ed.
250 ≤ MW ≤ 350
XLOGP ≤ 3.5
Num. rotatable bonds ≤ 7

No; 1 violation:MW<1.0
Synthetic accessibility?

Synthetic accessibility score: from 1 (very easy) to 10 (very difficult)
based on 1024 fragmental contributions (FP2) modulated by size and complexity penaties,
trained on 12'782'590 molecules and tested on 40 external molecules (r2 = 0.94)

2.53

Application In Synthesis of [ 107259-05-2 ]

* All experimental methods are cited from the reference, please refer to the original source for details. We do not guarantee the accuracy of the content in the reference.

  • Downstream synthetic route of [ 107259-05-2 ]

[ 107259-05-2 ] Synthesis Path-Downstream   1~4

  • 1
  • [ 107259-05-2 ]
  • [ 107259-06-3 ]
YieldReaction ConditionsOperation in experiment
With diisobutylaluminium hydride; In hexane; REFERENTIAL EXAMPLE 13 Synthesis of 1-tert-butoxycarbonylaminocyclopropanecarboaldehyde (P-13) STR22 7.1 g of the ester compound (P-12) was dissolved in 200 ml of anhydrous n-hexane. 46 ml of diisobutylaluminum hydride (1M solution in n-phexane) was added dropwise to the solution under cooling to -65 C. in argon atmosphere and the mixture was stirred at -60 to -70 C. for 4 h. The temperature was elevated to room temperature and the product was extracted sufficiently with saturated sodium hydrogensulfite solution. The precipitate thus formed was filtered off and the aqueous layer was adjusted to pH 9 with 10% NaOH under cooling with ice. After extraction with ether several times, the ether layer was washed with saturated aqueous sodium chloride solution and dried over magnesium sulfate. Ether was distilled off to obtain 2.6 g of the desired aldehyde (P-13) in the form of a colorless solid. NMR(CDCl3) δ ppm: 1.36(4H, m), 1.48(9H, s), 5.20(1H, bs), 9.20(1H, s).
  • 2
  • [ 107259-05-2 ]
  • [ 42303-42-4 ]
YieldReaction ConditionsOperation in experiment
With hydrogenchloride; In ethyl acetate; at 20℃; for 1h; Step 3: 1-Ethoxycarbonyl-cyclopropyl-ammonium chloride A saturated solution of HCl in ethyl acetate (20 mL) was added under nitrogen to a solution of 1-[[(1,1-dimethylethoxy)carbonyl]amino]cyclopropane carboxylic acid ethyl ester (10.07 g, 43.9 mmol), prepared in the previous step, in 20 mL of ethyl acetate at room temperature. After the addition, the reaction was stirred at room temperature for 1 h. The solid present was collected by filtration, rinsed with ethyl acetate and dried under reduced pressure to give 1-ethoxycarbonyl-cyclopropyl-ammonium chloride as a white solid.
  • 3
  • [ 24424-99-5 ]
  • [ 42303-42-4 ]
  • [ 107259-05-2 ]
YieldReaction ConditionsOperation in experiment
97% With triethylamine; In dichloromethane; at 23℃; To a solution of <strong>[42303-42-4]ethyl <strong>[42303-42-4]1-aminocyclopropanecarboxylate hydrochloride</strong></strong> (3.22 g, 19.4 mmol) in DCM (35 mL) was added triethylamine (2.71 mL, 19.4 mmol) upon which a suspension was obtained. A solution of Boc2O (4.24 g, 19.4 mmol) in DCM (5 mL) was added dropwise over ca. 2 mm. The reaction mixturewas stirred at RT overnight. Aqueous I M KHSO4 (100 mL) and DCM (50 mL) were added. The organic layer was separated, dried (Na2SO4), evaporated under reduced pressure and co-evaporated with THF (2x), to afford 4.31 g (97%) of the desired product.
With sodium carbonate; In tetrahydrofuran; at 20℃; for 16h; Step 1: Ethyl 1-(methylamino)cyclopropane-1-carboxylate A 2 M solution of sodium carbonate (15 mL of 2 M, 29.89 mmol) was added to a mixture of <strong>[42303-42-4]ethyl <strong>[42303-42-4]1-aminocyclopropanecarboxylate hydrochloride</strong></strong> (1.65 g, 9.963 mmol) in THF followed by the addition of di-tert-butyl dicarbonate (3.3 g, 14.94 mmol). The reaction was stirred for 16 hours at room temperature. Diethyl ether (50 mL) was added to the reaction and the aqueous layer separated. The organic layer was washed with 1N HCl (10 mL), water (10 mL) and brine, dried over MgSO4, filtered, and evaporated in vacuo to afford a clear oil. The clear oil was dissolved in THF and cooled to 0 C. Sodium hydride (1.2 g, 49.82 mmol) was added in portions wise. After 30 minutes, iodomethane (1.9 mL, 30 mmol) was added and the reaction was warmed to room temperature. A solution of saturated ammonium chloride (20 mL) was added and the reaction extracted with diethyl ether (3*20 mL). The combined organic extracts were washed with brine, dried over MgSO4, and concentrated to give ethyl 1-((tert-butoxycarbonyl)(methyl)amino)cyclopropane-1-carboxylate as a clear liquid, wt. 3.7 g. 1H NMR (400 MHz, CDCl3) delta 4.21-4.13 (m, 2H), 2.90-2.84 (m, 3H), 1.53-1.48 (m, 9H), 1.46 (d, J=8.0 Hz, 5H), 1.26 (d, J=7.0 Hz, 2H).
  • 4
  • [ 50-00-0 ]
  • [ 120870-47-5 ]
  • [ 107259-05-2 ]
  • C25H33NO6 [ No CAS ]
 

Historical Records