There will be a HazMat fee per item when shipping a dangerous goods. The HazMat fee will be charged to your UPS/DHL/FedEx collect account or added to the invoice unless the package is shipped via Ground service. Ship by air in Excepted Quantity (each bottle), which is up to 1g/1mL for class 6.1 packing group I or II, and up to 25g/25ml for all other HazMat items.
Type | HazMat fee for 500 gram (Estimated) |
Excepted Quantity | USD 0.00 |
Limited Quantity | USD 15-60 |
Inaccessible (Haz class 6.1), Domestic | USD 80+ |
Inaccessible (Haz class 6.1), International | USD 150+ |
Accessible (Haz class 3, 4, 5 or 8), Domestic | USD 100+ |
Accessible (Haz class 3, 4, 5 or 8), International | USD 200+ |
Structure of 10531-41-6
*Storage: {[sel_prStorage]}
*Shipping: {[sel_prShipping]}
The BI-3802 was designed by Boehringer Ingelheim and could be obtained free of charge through the Boehringer Ingelheim open innovation portal opnMe.com, associated with its negative control.
4.5
*For Research Use Only !
Change View
Size | Price | VIP Price | US Stock |
Global Stock |
In Stock | ||
{[ item.pr_size ]} |
Inquiry
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]} {[ getRatePrice(item.pr_usd,item.pr_rate,1,item.pr_is_large_size_no_price, item.discount_usd) ]} {[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]} |
Inquiry {[ getRatePrice(item.pr_usd,item.pr_rate,item.mem_rate,item.pr_is_large_size_no_price, item.vip_usd) ]} | Inquiry {[ item.pr_usastock ]} In Stock Inquiry - | {[ item.pr_chinastock ]} {[ item.pr_remark ]} In Stock 1-2 weeks - Inquiry - | Login | - + | Inquiry |
Please Login or Create an Account to: See VIP prices and availability
US Stock: ship in 0-1 business day
Global Stock: ship in 5-7 days
1-2weeks
Inquiry
{[ getRatePrice(item.pr_usd,item.pr_rate,item.mem_rate,item.pr_is_large_size_no_price, item.vip_usd) ]}
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]}
{[ getRatePrice(item.pr_usd,1,item.mem_rate,item.pr_is_large_size_no_price, item.pr_usd) ]}
Inquiry
{[ getRatePrice(item.pr_usd,item.pr_rate,1,item.pr_is_large_size_no_price, item.vip_usd) ]}
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]}
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]}
In Stock
- +
Please Login or Create an Account to: See VIP prices and availability
US Stock: ship in 0-1 business day
Global Stock: ship in 2 weeks
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
CAS No. : | 10531-41-6 |
Formula : | C6H5BrOS |
M.W : | 205.07 |
SMILES Code : | BrCC(=O)C1=CC=CS1 |
MDL No. : | MFCD02677721 |
InChI Key : | UHWNENCHFSDZQP-UHFFFAOYSA-N |
Pubchem ID : | 2776372 |
GHS Pictogram: |
![]() ![]() |
Signal Word: | Danger |
Hazard Statements: | H302-H314 |
Precautionary Statements: | P260-P264-P270-P280-P301+P330+P331-P303+P361+P353-P304+P340-P305+P351+P338-P310-P363-P405-P501 |
Class: | 8 |
UN#: | 3261 |
Packing Group: | Ⅱ |
Num. heavy atoms | 9 |
Num. arom. heavy atoms | 5 |
Fraction Csp3 | 0.17 |
Num. rotatable bonds | 2 |
Num. H-bond acceptors | 1.0 |
Num. H-bond donors | 0.0 |
Molar Refractivity | 42.38 |
TPSA ? Topological Polar Surface Area: Calculated from |
45.31 Ų |
Log Po/w (iLOGP)? iLOGP: in-house physics-based method implemented from |
1.65 |
Log Po/w (XLOGP3)? XLOGP3: Atomistic and knowledge-based method calculated by |
2.04 |
Log Po/w (WLOGP)? WLOGP: Atomistic method implemented from |
2.33 |
Log Po/w (MLOGP)? MLOGP: Topological method implemented from |
1.27 |
Log Po/w (SILICOS-IT)? SILICOS-IT: Hybrid fragmental/topological method calculated by |
3.36 |
Consensus Log Po/w? Consensus Log Po/w: Average of all five predictions |
2.13 |
Log S (ESOL):? ESOL: Topological method implemented from |
-2.68 |
Solubility | 0.433 mg/ml ; 0.00211 mol/l |
Class? Solubility class: Log S scale |
Soluble |
Log S (Ali)? Ali: Topological method implemented from |
-2.62 |
Solubility | 0.492 mg/ml ; 0.0024 mol/l |
Class? Solubility class: Log S scale |
Soluble |
Log S (SILICOS-IT)? SILICOS-IT: Fragmental method calculated by |
-2.88 |
Solubility | 0.272 mg/ml ; 0.00132 mol/l |
Class? Solubility class: Log S scale |
Soluble |
GI absorption? Gatrointestinal absorption: according to the white of the BOILED-Egg |
High |
BBB permeant? BBB permeation: according to the yolk of the BOILED-Egg |
Yes |
P-gp substrate? P-glycoprotein substrate: SVM model built on 1033 molecules (training set) |
No |
CYP1A2 inhibitor? Cytochrome P450 1A2 inhibitor: SVM model built on 9145 molecules (training set) |
Yes |
CYP2C19 inhibitor? Cytochrome P450 2C19 inhibitor: SVM model built on 9272 molecules (training set) |
No |
CYP2C9 inhibitor? Cytochrome P450 2C9 inhibitor: SVM model built on 5940 molecules (training set) |
No |
CYP2D6 inhibitor? Cytochrome P450 2D6 inhibitor: SVM model built on 3664 molecules (training set) |
No |
CYP3A4 inhibitor? Cytochrome P450 3A4 inhibitor: SVM model built on 7518 molecules (training set) |
No |
Log Kp (skin permeation)? Skin permeation: QSPR model implemented from |
-6.1 cm/s |
Lipinski? Lipinski (Pfizer) filter: implemented from |
0.0 |
Ghose? Ghose filter: implemented from |
None |
Veber? Veber (GSK) filter: implemented from |
0.0 |
Egan? Egan (Pharmacia) filter: implemented from |
0.0 |
Muegge? Muegge (Bayer) filter: implemented from |
0.0 |
Bioavailability Score? Abbott Bioavailability Score: Probability of F > 10% in rat |
0.55 |
PAINS? Pan Assay Interference Structures: implemented from |
0.0 alert |
Brenk? Structural Alert: implemented from |
1.0 alert: heavy_metal |
Leadlikeness? Leadlikeness: implemented from |
No; 1 violation:MW<1.0 |
Synthetic accessibility? Synthetic accessibility score: from 1 (very easy) to 10 (very difficult) |
2.22 |
* All experimental methods are cited from the reference, please refer to the original source for details. We do not guarantee the accuracy of the content in the reference.
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
Intermediate 17: (+/-V1-r3-Methyl-6-(2-thienvnimidazor2.1-biϖ .3lthiazol-2-yllethanolA solution of 2-bromo-1-(2-thienyl)ethanone (commercially available from Acros Organics) (0.820 g, 4 mmol) in ethanol (12 ml) was added to 1-(2-amino-4-methyl- 1 ,3-thiazol-5-yl)ethanone (commercially available from Aldrich) (0.625 g, 4.00 mmol). The reaction mixture was heated at reflux over night. 1-Butanol (5 ml) was added and the reaction mixture was stirred at reflux for 2 days. The mixture was evaporated under vacuum. Ethanol (25ml) followed by NaBH4 (197 mg, 5.20 mmol) were added and the reaction mixture was stirred at room temperature over night. Water (2ml) was added and the solvent removed under vacuum to obtain a solid which was dissolved <n="41"/>in 50% MeOH/DCM. The MeOH/DCM solution was loaded onto a SCX-2 cartridge. The cartridge was washed with MeOH (40ml) then eluted with a solution of NI-13/MeOH (0.5M) (60ml). The eluant was evaporated to dryness and the residue was purified by MDAP to give the title compound (1 1 mg); MS: ES+ m/z: 265 [MH+] at RT 2.6 min. Ci2H12N2OS2 requires 264 (analysed by LCMS A). |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
With toluene-4-sulfonic acid; In toluene; at 130℃;Product distribution / selectivity; | Example 23; Synthesis of (4S)-trans-,cis-2-(4-chlorophenyl)-2-bromomethyl-4-chloromethyl-1,3-dioxolane suppressing halogen exchange between substrates A mixture of 2-bromo-4'-chloroacetophenone (4.94 g, 2-chloro-4'-chloroacetophenone content=0.09%), p-toluenesulfonic acid monohydrate (0.20 g, 0.05 equivalent) and toluene (100 mL) was refluxed at 130C using an azeotropic distillation device with a Dean-Stark tube, and (S)-monochlorohydrin (2.59 g, 1.1 equivalents, >99%ee) was added dropwise under reflux such that the amount of the (S)-monochlorohydrin present in the reaction solution would be not more than 0.1 equivalent (not more than 2.1 mmol) relative to the amount of 2-bromo-4'-chloroacetophenone to be used (21.2 mmol), while analyzing the progress of the reaction by GC. After confirmation of the completion of the azeotropic distillation, the reaction mixture was cooled and washed with 10% aqueous sodium hydrogen carbonate solution and 10% brine. The solvent was evaporated under reduced pressure to give (4S)-trans-,cis-2-(4-chlorophenyl)-2-bromomethyl-4-chloromethyl-1,3-dioxolane (6.56 g, >99%ee). Here, the content percentage of (4S)-trans-,cis-2-(4-chlorophenyl)-2-chloromethyl-4-chloromethyl-1,3-dioxolane halogen-exchanged with a chlorine atom was 0.09%. Examples 30 to 41 Synthesis of (4S)-trans-cis-2-aryl-2-bromomethyl-4-chloromethyl-1,3-dioxolane suppressing halogen exchange In Examples 30 to 41, reactions were performed according to Example 23 and using aryl(bromomethyl)ketones (halogen-exchanged compound content<0.1%) shown in Table 7 and Table 8. The results are shown in Table 9 and Table 10 together with Example 23. |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
83% | In ethanol; at 70℃; for 2h; | General procedure: Compounds 17-29and 43-61 were prepared following this general protocol unless otherwise noted. To substituted2-bromoethanone in ethanol was added substituted thiourea (1.02 eq). The mixture wasstirred at 70C. The reaction was monitored via LC/MS. After 2 h, the reaction mixture wascooled to room temperature and precipitate was formed. The precipitate was collected by vacuumfiltration and washed with acetone. The solid was dissolved in 2 MNaOH (25 mL) and extracted with EtOAc (3 x 50 mL). The combined organic layers were dried over Na2SO4 andconcentrated in vacuo desired product. |