Structure of 1001756-23-5
*Storage: {[sel_prStorage]}
*Shipping: {[sel_prShipping]}
The BI-3802 was designed by Boehringer Ingelheim and could be obtained free of charge through the Boehringer Ingelheim open innovation portal opnMe.com, associated with its negative control.
4.5
*For Research Use Only !
Change View
Size | Price | VIP Price | US Stock |
Global Stock |
In Stock | ||
{[ item.pr_size ]} |
Inquiry
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]} {[ getRatePrice(item.pr_usd,item.pr_rate,1,item.pr_is_large_size_no_price, item.discount_usd) ]} {[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]} |
Inquiry {[ getRatePrice(item.pr_usd,item.pr_rate,item.mem_rate,item.pr_is_large_size_no_price, item.vip_usd) ]} | Inquiry {[ item.pr_usastock ]} In Stock Inquiry - | {[ item.pr_chinastock ]} {[ item.pr_remark ]} In Stock 1-2 weeks - Inquiry - | Login | - + | Inquiry |
Please Login or Create an Account to: See VIP prices and availability
US Stock: ship in 0-1 business day
Global Stock: ship in 5-7 days
1-2weeks
Inquiry
{[ getRatePrice(item.pr_usd,item.pr_rate,item.mem_rate,item.pr_is_large_size_no_price, item.vip_usd) ]}
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]}
{[ getRatePrice(item.pr_usd,1,item.mem_rate,item.pr_is_large_size_no_price, item.pr_usd) ]}
Inquiry
{[ getRatePrice(item.pr_usd,item.pr_rate,1,item.pr_is_large_size_no_price, item.vip_usd) ]}
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]}
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]}
In Stock
- +
Please Login or Create an Account to: See VIP prices and availability
US Stock: ship in 0-1 business day
Global Stock: ship in 2 weeks
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
CAS No. : | 1001756-23-5 |
Formula : | C11H8BrNO2 |
M.W : | 266.09 |
SMILES Code : | O=C(C1=CC2=CC=C(Br)C=C2N=C1)OC |
MDL No. : | MFCD09834664 |
InChI Key : | GPLUSJRHUJLUHU-UHFFFAOYSA-N |
Pubchem ID : | 59321547 |
GHS Pictogram: |
![]() |
Signal Word: | Warning |
Hazard Statements: | H302-H315-H319-H332-H335 |
Precautionary Statements: | P261-P280-P305+P351+P338 |
Num. heavy atoms | 15 |
Num. arom. heavy atoms | 10 |
Fraction Csp3 | 0.09 |
Num. rotatable bonds | 2 |
Num. H-bond acceptors | 3.0 |
Num. H-bond donors | 0.0 |
Molar Refractivity | 60.72 |
TPSA ? Topological Polar Surface Area: Calculated from |
39.19 Ų |
Log Po/w (iLOGP)? iLOGP: in-house physics-based method implemented from |
2.51 |
Log Po/w (XLOGP3)? XLOGP3: Atomistic and knowledge-based method calculated by |
2.94 |
Log Po/w (WLOGP)? WLOGP: Atomistic method implemented from |
2.78 |
Log Po/w (MLOGP)? MLOGP: Topological method implemented from |
2.32 |
Log Po/w (SILICOS-IT)? SILICOS-IT: Hybrid fragmental/topological method calculated by |
2.96 |
Consensus Log Po/w? Consensus Log Po/w: Average of all five predictions |
2.7 |
Log S (ESOL):? ESOL: Topological method implemented from |
-3.7 |
Solubility | 0.0527 mg/ml ; 0.000198 mol/l |
Class? Solubility class: Log S scale |
Soluble |
Log S (Ali)? Ali: Topological method implemented from |
-3.43 |
Solubility | 0.1 mg/ml ; 0.000376 mol/l |
Class? Solubility class: Log S scale |
Soluble |
Log S (SILICOS-IT)? SILICOS-IT: Fragmental method calculated by |
-4.63 |
Solubility | 0.00622 mg/ml ; 0.0000234 mol/l |
Class? Solubility class: Log S scale |
Moderately soluble |
GI absorption? Gatrointestinal absorption: according to the white of the BOILED-Egg |
High |
BBB permeant? BBB permeation: according to the yolk of the BOILED-Egg |
Yes |
P-gp substrate? P-glycoprotein substrate: SVM model built on 1033 molecules (training set) |
No |
CYP1A2 inhibitor? Cytochrome P450 1A2 inhibitor: SVM model built on 9145 molecules (training set) |
Yes |
CYP2C19 inhibitor? Cytochrome P450 2C19 inhibitor: SVM model built on 9272 molecules (training set) |
Yes |
CYP2C9 inhibitor? Cytochrome P450 2C9 inhibitor: SVM model built on 5940 molecules (training set) |
No |
CYP2D6 inhibitor? Cytochrome P450 2D6 inhibitor: SVM model built on 3664 molecules (training set) |
No |
CYP3A4 inhibitor? Cytochrome P450 3A4 inhibitor: SVM model built on 7518 molecules (training set) |
No |
Log Kp (skin permeation)? Skin permeation: QSPR model implemented from |
-5.84 cm/s |
Lipinski? Lipinski (Pfizer) filter: implemented from |
0.0 |
Ghose? Ghose filter: implemented from |
None |
Veber? Veber (GSK) filter: implemented from |
0.0 |
Egan? Egan (Pharmacia) filter: implemented from |
0.0 |
Muegge? Muegge (Bayer) filter: implemented from |
0.0 |
Bioavailability Score? Abbott Bioavailability Score: Probability of F > 10% in rat |
0.55 |
PAINS? Pan Assay Interference Structures: implemented from |
0.0 alert |
Brenk? Structural Alert: implemented from |
0.0 alert: heavy_metal |
Leadlikeness? Leadlikeness: implemented from |
No; 1 violation:MW<0.0 |
Synthetic accessibility? Synthetic accessibility score: from 1 (very easy) to 10 (very difficult) |
1.59 |
* All experimental methods are cited from the reference, please refer to the original source for details. We do not guarantee the accuracy of the content in the reference.
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
16% | 2c) Methyl 7-bromo-3-quinolinecarboxylate A solution of 820 mg (1.93 mmol) of methyl (2E)-3-(4-bromophenyl)-2-([(4-methylphenyl)sulfonyl]amino}methyl)-2-propenoate, 995 mg (3.09 mmol) of bis(acetyloxy)(phenyl)-lambda3-iodane and 490 mg (1.93 mmol) of iodine in 35 mL of 1,2-dichloroethane were stirred at 70° C. for 30 min. The solvent was evaporated and the residue taken up in 25 mL DMF and 1.07 g (7.73 mmol) of K2CO3 was added. The mixture was stirred at 120° C. for 6 hr. EtOAc was added and the organics were washed with three portions of H2O then brine. The solution was then concentrated and the residue purified by silica gel chromatography (40 g of silica gel eluding with 0-40percent EtOAc in hexanes over 45 minutes) to give 80 mg (16percent) of methyl 7-bromo-3-quinolinecarboxylate as an off-white solid. 1H NMR (400 MHz, CDCl3): delta 9.34 (s, 1H), 8.81 (s, 1H), 8.35 (s, 1H), 7.80 (d, J=9 Hz, 1H), 7.73 (d, J=9 Hz, 1H), 4.02 (s, 3H). ESI-LCMS m/z 267 (M+H)+. |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
With potassium phosphate;palladium diacetate; triphenylphosphine; In 1,4-dioxane; water; at 60℃; for 1h; | 2d) Methyl 7-[4-([3-(2,6-dichlorophenyl)-5-(1-methylethyl)-4-isoxazolyl]methyl}oxy)phenyl]-3-quinolinecarboxylate A solution of 78 mg (0.29 mmol) of <strong>[1001756-23-5]methyl 7-bromo-3-quinolinecarboxylate</strong>, 97 mg (0.44 mmol) of 4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenol, 3 mg (0.01 mmol) of palladium acetate, 8 mg (0.03 mmol) of triphenylphosphine, 218 mg (1.03 mmol) of K3PO4 and 25 muL of H2O in 1.0 mL of dioxane was stirred at 60° C. for 1 hr. EtOAc was added and the organics were washed with water and brine then concentrated. To the residue was added 65 mg (0.21 mmol) of 4-(chloromethyl)-3-(2,6-dichlorophenyl)-5-(1-methylethyl)isoxazole, 74 mg (0.54 mmol) of K2CO3 and 1.5 mL of DMF and the mixture was then stirred at 60° C. for 1 hr. EtOAc was added and the organics were washed with three portions of water, then brine. The solution was concentrated and the residue purified by silica gel chromatography (12 g of silica gel eluding with 0-40percent EtOAc in hexanes over 45 minutes) to give 47 mg (30percent) of methyl 7-[4-([3-(2,6-dichlorophenyl)-5-(1-methylethyl)-4-isoxazolyl]methyl}oxy)phenyl]-3-quinolinecarboxylate as a clear glass. 1H NMR (400 MHz, CDCl3): delta 9.44 (s, 1H), 8.83 (s, 1H), 8.28 (s, 1H), 7.96 (d, J=9 Hz, 1H), 7.82 (d, J=9 Hz, 1H), 7.64 (d, J=9 Hz, 2H), 7.41 (d, J=8 Hz, 2H), 7.35-7.31 (m, 1H), 6.92 (d, J=9 Hz, 2H), 4.79 (s, 2H), 4.02 (s, 3H), 3.38-3.34 (m, 1H), 1.45 (d, J=7 Hz, 6H). ESI-LCMS m/z 548 (M+H)+. | |
With potassium phosphate; palladium diacetate; triphenylphosphine; In 1,4-dioxane; water; at 60℃; for 1h; | A solution of <strong>[1001756-23-5]methyl 7-bromo-3-quinolinecarboxylate</strong> 2c (78 mg, 0.29 mmol), 4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenol 3b (97 mg, 0.44 mmol), palladium(II) acetate (3 mg, 0.01 mmol), triphenylphosphine (8 mg, 0.03 mmol), potassium phosphate (218 mg, 1.03 mmol), and water (25 muL) in dioxane (1.0 mL) was stirred at 60 °C for 1 hour. Ethyl acetate was added and the organics were washed with water and brine, and then concentrated to give methyl 7-(4-hydroxyphenyl)quinoline-3-carboxylate 4c. To methyl 7-(4-hydroxyphenyl)quinoline-3-carboxylate 4c was added 4-(chloromethyl)-3-(2,6-dichlorophenyl)-5-(1-methylethyl)isoxazole 5a (65 mg, 0.21 mmol), potassium carbonate (74 mg, 0.54 mmol) and N,N-dimethylformamide (1.5 mL) and the mixture was then stirred at 60 °C for 1 hour. Ethyl acetate was added and the organics were washed with three portions of water, then brine. The solution was concentrated, and the residue was purified by silica gel chromatography (hexanes to 2:3 ethyl acetate:hexanes) to give methyl 7-[4-([3-(2,6-dichlorophenyl)-5-(1-methylethyl)-4-isoxazolyl]methyl}oxy)phenyl]-3-quinolinecarboxylate (47 mg, 30percent) as a clear glass (1H NMR (400 MHz, CDCl3): 9.44 (s, 1H), 8.83 (s, 1H), 8.28 (s, 1H), 7.96 (d, J = 9 Hz, 1H), 7.82 (d, J = 9 Hz, 1H), 7.64 (d, J = 9 Hz, 2H), 7.41 (d, J = 8 Hz, 2H), 7.35-7.31 (m, 1H), 6.92 (d, J = 9 Hz, 2H), 4.79 (s, 2H), 4.02 (s, 3H), 3.38-3.34 (m, 1H), 1.45 (d, J = 7 Hz, 6H); ESI-LCMS m/z 548 (M+H)). To methyl 7-[4-([3-(2,6-dichlorophenyl)-5-(1-methylethyl)-4-isoxazolyl]methyl}oxy)phenyl]-3-quinolinecarboxylate (47 mg, 0.09 mmol) in a mixture of ethanol (3 mL), tetrahydrofuran (1 mL), and water (1 mL) was added sodium hydroxide (35 mg, 0.86 mmol) and the mixture stirred at 50 °C for 16 hours. The mixture was concentrated to 1/3 volume then added dropwise to a stirred solution of 0.5 N hydrochloric acid (10 mL). The resulting solids were collected by suction filtration, washed with water, then dried to yield 7-[4-([3-(2,6-dichlorophenyl)-5-(1-methylethyl)-4-isoxazolyl]methyl}oxy)phenyl]-3-quinolinecarboxylic acid 1e (32 mg, 70percent) as a yellow solid. 1H NMR (400 MHz, DMSO-d6): delta 9.30 (s, 1H), 8.97 (s, 1H), 8.24-8.21 (m, 2H), 7.99 (d, J = 8 Hz, 1H), 7.76 (d, J = 8 Hz, 2H), 7.63-7.61 (m, 2H), 7.55-7.52 (m, 1H), 6.93 (d, J = 9 Hz, 2H), 4.88 (s, 2H), 3.50-3.44 (septet, J = 7 Hz, 1H), 1.33 (d, J = 7 Hz, 6H); ESI-LCMS m/z 534 (M+H). |
A129687 [1220418-77-8]
Methyl 6-bromoquinoline-3-carboxylate
Similarity: 1.00
A324241 [481054-89-1]
Ethyl 6-bromoquinoline-3-carboxylate
Similarity: 0.98
A102967 [798545-30-9]
6-Bromoquinoline-3-carboxylic acid
Similarity: 0.94
A615967 [347146-14-9]
Ethyl 8-bromoquinoline-3-carboxylate
Similarity: 0.92
A441421 [1266728-34-0]
Methyl 6-bromoquinoline-8-carboxylate
Similarity: 0.89
A129687 [1220418-77-8]
Methyl 6-bromoquinoline-3-carboxylate
Similarity: 1.00
A324241 [481054-89-1]
Ethyl 6-bromoquinoline-3-carboxylate
Similarity: 0.98
A615967 [347146-14-9]
Ethyl 8-bromoquinoline-3-carboxylate
Similarity: 0.92
A115630 [1445781-45-2]
Methyl 5-bromoquinoline-8-carboxylate
Similarity: 0.89
A441421 [1266728-34-0]
Methyl 6-bromoquinoline-8-carboxylate
Similarity: 0.89
A129687 [1220418-77-8]
Methyl 6-bromoquinoline-3-carboxylate
Similarity: 1.00
A324241 [481054-89-1]
Ethyl 6-bromoquinoline-3-carboxylate
Similarity: 0.98
A102967 [798545-30-9]
6-Bromoquinoline-3-carboxylic acid
Similarity: 0.94
A615967 [347146-14-9]
Ethyl 8-bromoquinoline-3-carboxylate
Similarity: 0.92
A441421 [1266728-34-0]
Methyl 6-bromoquinoline-8-carboxylate
Similarity: 0.89