Home Products Cited in Publications Worldwide Influence of molecular weight on thermal and mechanical properties of bisphenol A-based phthalonitrile resins
J. Appl. Polym. Sci.,2022,139(11):51783.
Butler, Tristan; Bunton, Caleb; Ryou, Heonjune; Dyatkin, Boris; Weise, Nickolaus; Laskoski, Matthew
This effort assesses the correlation between chem. structures and performance-essential thermal, mech., and long-term stability properties of cross-linked thermosets. Resins of different mol. weights were prepared from the Bisphenol A based PEEK-like oligomeric phthalonitrile (BisA). Differential scanning calorimetry, which was used to investigate curing thermodn., indicated that BisA resins demonstrated pos. correlation between increasing oligomer mol. weight and both resulting m.ps. and cure initiation conditions. Characterization of thermal properties using thermogravimetric anal. (TGA) indicated a similar mol. weight trend, with char yields ranging between 57% and 73%. Rheol. studies of BisA of different mol. weights indicated significant viscosity increases in phthalonitriles that crosslinked from oligomers with higher mol. weights Moreover, the n = 1 chain length resin exhibited a gel point at 100°C lower than the n = 25 oligomer. Anal. of hardness of these cured polymers indicated that the resin crosslinked using the n = 1 oligomer was most brittle, while the thermoset derived from the n = 4 BisA demonstrated highest hardness. Aging of cured phthalonitriles indicated that the n = 10 remained most stable in long-duration high-temperature environments. This study suggests the use of preparing BisA thermosets from oligomers with different mol. weights as an effective strategy for improving toughness, albeit at the tradeoff of lower thermal stabilities.
mechanical properties ; resins ; thermal properties ; thermosets