Home Cart Sign in  
Chemical Structure| 867366-90-3 Chemical Structure| 867366-90-3

Structure of 867366-90-3

Chemical Structure| 867366-90-3

*Storage: {[sel_prStorage]}

*Shipping: {[sel_prShipping]}

,{[proInfo.pro_purity]}

4.5 *For Research Use Only !

{[proInfo.pro_purity]}
Cat. No.: {[proInfo.prAm]} Purity: {[proInfo.pro_purity]}

Change View

Size Price VIP Price

US Stock

Global Stock

In Stock
{[ item.pr_size ]} Inquiry {[ getRatePrice(item.pr_usd,item.pr_rate,item.mem_rate,item.pr_is_large_size_no_price, item.vip_usd) ]}

US Stock: ship in 0-1 business day
Global Stock: ship in 5-7 days

  • {[ item.pr_size ]}

In Stock

- +

Please Login or Create an Account to: See VIP prices and availability

US Stock: ship in 0-1 business day
Global Stock: ship in 2 weeks

  • 1-2 Day Shipping
  • High Quality
  • Technical Support
Product Citations

Alternative Products

Product Details of [ 867366-90-3 ]

CAS No. :867366-90-3
Formula : C8H8BrNO2
M.W : 230.06
SMILES Code : COC1=CC(Br)=CC(C=NO)=C1

Safety of [ 867366-90-3 ]

Application In Synthesis of [ 867366-90-3 ]

* All experimental methods are cited from the reference, please refer to the original source for details. We do not guarantee the accuracy of the content in the reference.

  • Downstream synthetic route of [ 867366-90-3 ]

[ 867366-90-3 ] Synthesis Path-Downstream   1~1

  • 1
  • [ 262450-65-7 ]
  • [ 867366-90-3 ]
YieldReaction ConditionsOperation in experiment
97% With hydroxylamine hydrochloride; In pyridine; ethanol; at 65℃; for 16h; A solution of the aldehyde 180b (12.0 g, 56 mmol), hydroxylamine hydrochloride (19.4 g, 5 equiv), EtOH (100 mL) and pyridine (10 mL) was heated to 65 C. for 16 h. The mixture was cooled to RT, and partitioned between 50% EtOAc/hexanes and water. The organic layer was washed with brine and dried (MgSO4). The volatile materials were evaporated to afford 12.4 g (97%) of the oxime. This material was dissolved in anhydrous dioxane (100 mL) and pyridine (26 mL, 6 equiv). The solution was cooled to 0 C., TFAA (15 mL, 2 equiv) was added, and the mixture was allowed to warm to RT. The solution was stirred for 2 d, and warmed to 60 C for 1 h. The mixture was cooled to RT, and added carefully to ice water. The mixture was extracted with methylene chloride, and the combined organic layers were washed with water, 1 M HCl, and brine. The organic layer was dried (MgSO4) and evaporated to afford 10.4 g (90%) of 180c,
97% With pyridine; hydroxylamine hydrochloride; In ethanol; at 65℃; for 16h; A solution of the aldehyde 46b (12.0 g, 56 mmol), hydroxylamine hydrochloride (19.4 g, 5 equiv), EtOH (100 mL) and pyridine (10 mL) was heated to 65 C. for 16 h. The mixture was cooled to RT, and partitioned between 50% EtOAc/hexanes and water. The organic layer was washed with brine and dried (MgSO4), filtered and the volatile materials were evaporated to afford 12.4 g (97%) of the oxime. This material was dissolved in anhydrous dioxane (100 mL) and pyridine (26 mL, 6 equiv). The solution was cooled to 0 C., TFAA (15 mL, 2 equiv) was added, and the mixture was allowed to warm to RT. The solution was stirred for 2 d, and warmed to 60 C. for 1 h. The mixture was cooled to RT, and added carefully to ice water. The mixture was extracted with DCM, and the combined organic layers were washed with water, 1 M HCl, and brine. The organic layer was dried (MgSO4) and evaporated to afford 10.4 g (90%) of 46c,
97% With pyridine; hydroxylamine hydrochloride; In ethanol; at 65℃; for 16h; A solution of the aldehyde R-21b (12.0 g, 56 mmol), NH2OH.HCl (19.4 g, 5 equiv), EtOH (100 mL) and pyridine (10 mL) was heated to 65 C. for 16 h. The mixture was cooled to RT, and partitioned between 50% EtOAc/hexanes and water. The organic layer was washed with brine and dried (MgSO4). The volatile materials were evaporated to afford 12.4 g (97%) of the. oxime. This material was dissolved in anhydrous dioxane (100 mL) and pyridine (26 mL, 6 equiv). The solution was cooled to 0 C., TFAA (15 mL, 2 equiv) was added, and the mixture was allowed to warm to RT. The solution was stirred for 2 d, and warmed to 60 C for 1 h. The mixture was cooled to RT and added carefully to ice water. The mixture was extracted with DCM, and the combined organic layers were washed with water, 1 M HCl, and brine. The organic layer was dried (MgSO4) and evaporated to afford 10.4 g (90%) of R-21c.
97% With pyridine; hydroxylamine hydrochloride; In ethanol; at 65℃; for 16h; step 2-A solution of 1-bromo-3-formyl-benzaldehyde (12.0 g, 56 mmol), hydroxylamine hydrochloride (19.4 g, 5 equiv), EtOH (100 mL) and pyridine (10 mL) was heated to 65 C. for 16 h. The mixture was cooled to RT, and partitioned between 50% EtOAc/hexanes and water. The organic layer was washed with brine and dried (MgSO4). The volatile materials were evaporated to afford 12.4 g (97%) of the oxime.
97% With pyridine; hydroxylamine hydrochloride; In ethanol; at 65℃; for 16h; A solution of 1-bromo-3-formyl-benzaldehyde (12.0 g, 56 mmol), hydroxylamine hydrochloride (19.4 g, 5 equiv), EtOH (100 mL) and pyridine (10 mL) was heated to 65 C. for 16 h. The mixture was cooled to RT, and partitioned between 50% EtOAc/hexanes and water. The organic layer was washed with brine and dried (MgSO4). The volatile materials were evaporated to afford 12.4 g (97%) of the oxime. This material was dissolved in anhydrous dioxane (100 mL) and pyridine (26 mL, 6 equiv). The solution was cooled to 0 C., TFAA (15 mL, 2 equiv) was added, and the mixture was allowed to warm to RT. The solution was stirred for 2 d, and warmed to 60 C for 1 h. The mixture was cooled to RT, and added carefully to ice water. The mixture was extracted with DCM, and the combined organic layers were washed with water, 1 M HCl, and brine. The organic layer was dried (MgSO4) and evaporated to afford 10.4 g (90%) of 3-bromo-5-methoxy-benzonitrile.
97% With pyridine; hydroxylamine hydrochloride; In ethanol; at 65℃; for 16h; step 2-A solution of the aldehyde R-21b (12.0 g, 56 mmol), hydroxylamine hydrochloride (19.4 g, 5 equiv), EtOH (100 mL) and pyridine (10 mL) was heated to 65 C. for 16 h. The mixture was cooled to RT, and partitioned between 50% EtOAc/hexanes and water. The organic layer was washed with brine and dried (MgSO4). The volatile materials were evaporated to afford 12.4 g (97%) of the oxime. This material was dissolved in anhydrous dioxane (100 mL) and pyridine (26 mL, 6 equiv). The solution was cooled to 0 C., TFAA (15 mL, 2 equiv) was added, and the mixture was allowed to warm to RT. The solution was stirred for 2 d, and warmed to 60 C for 1 h. The mixture was cooled to RT, and added carefully to ice water. The mixture was extracted with DCM, and the combined organic layers were washed with water, 1 M HCl, and brine. The organic layer was dried (MgSO4) and evaporated to afford 10.4 g (90%) of R-21c,
With pyridine; hydroxylamine hydrochloride; In ethanol; at 65℃; for 16h; A solution of <strong>[262450-65-7]3-bromo-5-methoxybenzaldehyde</strong> (4.02 g, 18.7 mmol) and hydroxylamine hydrochloride (6.50 g, 93.5 mmol) in pyridine (50 mL) and EtOH (50 mL) was heated to 65 C. for 16 h. The solvent was removed, and the remaining materials were partitioned between 1:1 EtOAc/hexanes (150 mL) and H2O (75 mL). The organic layer was washed with brine (60 mL), and the solvents were evaporated. The remaining oil was dissolved in anhydrous dioxane (50 mL), and trifluoroacetic anhydride (5.1 mL, 37.4 mmol) and pyridine (9.07 mL, 112.2 mmol) were added. The mixture was heated to 60 C. for 3 h and then cooled to RT. CHCl3 (100 mL) was added, and the organic layer was washed with H2O (2×50 mL), 5% aqueous HCl solution (30 mL), brine (30 mL), and dried with anhydrous MgSO4. The solvents were removed to provide a white solid. This solid was placed in a 150 mL flask that was flushed with nitrogen. Collidine (40 mL) and LiI (7.92 g, 59.10 mmol) were added, and the mixture was heated to 180 C. for 5 h. The reaction mixture was cooled to RT, and partitioned between H2O (400 mL) and EtOAc (100 mL). The layers were separated, and the aqueous layer was acidified with 10% aqueous HCl solution, and extracted with 2:1 EtOAc/hexanes (3×125 mL). The combined organic layers were washed with H2O (100 mL), 10% aqueous HCl solution (2×50 mL), brine (75 mL), and dried with anhydrous MgSO4. The solvents were evaporated and the resulting solid was purified by flash chromatography on silica gel (10% to 40% EtOAc/hexanes) to provide 3.40 g (92%) of 3-bromo-5-hydroxybenzonitrile (116).

 

Historical Records