Home Cart Sign in  
Chemical Structure| 38011-77-7 Chemical Structure| 38011-77-7

Structure of 38011-77-7

Chemical Structure| 38011-77-7

*Storage: {[sel_prStorage]}

*Shipping: {[sel_prShipping]}

,{[proInfo.pro_purity]}

4.5 *For Research Use Only !

{[proInfo.pro_purity]}
Cat. No.: {[proInfo.prAm]} Purity: {[proInfo.pro_purity]}

Change View

Size Price VIP Price

US Stock

Global Stock

In Stock
{[ item.pr_size ]} Inquiry {[ getRatePrice(item.pr_usd,item.pr_rate,item.mem_rate,item.pr_is_large_size_no_price, item.vip_usd) ]}

US Stock: ship in 0-1 business day
Global Stock: ship in 5-7 days

  • {[ item.pr_size ]}

In Stock

- +

Please Login or Create an Account to: See VIP prices and availability

US Stock: ship in 0-1 business day
Global Stock: ship in 2 weeks

  • 1-2 Day Shipping
  • High Quality
  • Technical Support
Product Citations

Alternative Products

Product Details of [ 38011-77-7 ]

CAS No. :38011-77-7
Formula : C10H13BrO
M.W : 229.11
SMILES Code : COC1=CC=CC=C1CCCBr
MDL No. :MFCD00017896

Safety of [ 38011-77-7 ]

GHS Pictogram:
Signal Word:Warning
Hazard Statements:H302-H315-H319-H335
Precautionary Statements:P261-P264-P270-P271-P280-P301+P312-P302+P352-P304+P340-P305+P351+P338-P330-P332+P313-P337+P313-P362-P403+P233-P405-P501

Application In Synthesis of [ 38011-77-7 ]

* All experimental methods are cited from the reference, please refer to the original source for details. We do not guarantee the accuracy of the content in the reference.

  • Downstream synthetic route of [ 38011-77-7 ]

[ 38011-77-7 ] Synthesis Path-Downstream   1~1

  • 1
  • [ 10493-37-5 ]
  • [ 38011-77-7 ]
YieldReaction ConditionsOperation in experiment
81% With bromine; triphenylphosphine; In dichloromethane; at 0 - 5℃; for 4h;Cooling with ice; 3-(2-Methoxyphenyl)propan-1-ol (1.6 g, 9.7 mmol) was dissolved in DCM (43 mL) to which was added triphenylphosphine (2.7 g, 0.01 mol). The solution was cooled in an ice bath and bromine (1.6 g, 0.01 mol) was added dropwise over 4 h whilst the reaction was maintained at 0-5C. The reaction was quenched with a saturated aqueous solution of NaHCO3 (15 mL), the DCM layer removed and the aqueous layer extracted with more DCM (50 mL3). The combined organic layers were dried (Na2SO4) and concentrated to give a yellow solid. The solid was loaded onto silica (1 g) and purified by chromatography (silica, 24 g) eluting with hexane (3CV), 0-100% EtOAc in hexane (40CV) and EtOAc (CV). A clear oil was obtained (1.81 g, 81%). 1H NMR (CDCl3, 600 MHz) δ 7.19 (1H, td, J 1.8, 7.8 Hz), 7.14 (1H, dd, J 1.2, 7.2 Hz), 6.87 (1H, td, J 0.6, 7.2 Hz), 6.84 (1H, d, J 8.4 Hz), 8.31 (3H, s), 3.39 (2H, t, J 6.6 Hz), 2.75 (2H, t, J 7.2 Hz), 2.13 (2H, t, J 7.2 Hz).
81% With bromine; triphenylphosphine; In dichloromethane; at 0 - 5℃; for 4h;Cooling with ice; 3-(2-Methoxyphenyl)propan-1-ol (1.6 g, 9.7 mmol) was dissolved in DCM (43 mL) to which was added triphenylphosphine (2.7 g, 0.01 mol). The solution was cooled in an ice bath and bromine (1.6 g, 0.01 mol) was added dropwise over 4 h whilst the reaction was maintained at 0-5C. The reaction was quenched with a saturated aqueous solution of NaHCO3 (15 mL), the DCM layer removed and the aqueous layer extracted with more DCM (50 mL3). The combined organic layers were dried (Na2SO4) and concentrated to give a yellow solid. The solid was loaded onto silica (1 g) and purified by chromatography (silica, 24 g) eluting with hexane (3CV), 0-100% EtOAc in hexane (40CV) and EtOAc (CV). A clear oil was obtained (1.81 g, 81%). 1H NMR (CDCl3, 600 MHz) δ 7.19 (1H, td, J 1.8, 7.8 Hz), 7.14 (1H, dd, J 1.2, 7.2 Hz), 6.87 (1H, td, J 0.6, 7.2 Hz), 6.84 (1H, d, J 8.4 Hz), 8.31 (3H, s), 3.39 (2H, t, J 6.6 Hz), 2.75 (2H, t, J 7.2 Hz), 2.13 (2H, t, J 7.2 Hz).
With N-Bromosuccinimide; triphenylphosphine; In dichloromethane; at 20℃; for 16h;Ice-cooling; (17-2) Synthesis of 1-(3-bromopropyl)-2-methoxybenzene (compound 17-2) Compound 17-1 (2.00 g) was dissolved in methylene chloride (50 ml), triphenylphosphine (3.58 g) and N-bromosuccinimide (2.40 g) were added under ice-cooling, and the mixture was stirred under ice-cooling for 1 hr, and further at room temperature for 15 hr. The reaction mixture was washed with water and saturated brine, and dried over anhydrous magnesium sulfate. The solvent was evaporated under reduced pressure. Diethyl ether (100 ml) was added, and the precipitated triphenylphosphine oxide was filtered off. The concentrate of the filtrate was purified by silica gel column chromatography (hexane alone) to give the object product (2.24 g) as a pale-brown oil. 1H-NMR(CDCl3) δ (ppm): 2.11-2.18(2H, m), 2.76(2H, t, J=7.3Hz), 3.40(2H, t, J=6.9Hz), 3.82(3H, s), 6.83-6.90(2H, m), 7.13-7.22 (2H, m).
With sodium hydrogencarbonate; triphenylphosphine; 1-(3-Bromopropyl)-2-methoxybenzene 3-(2-Methoxyphenyl)propan-1-ol (1.6 g, 9.7 mmol) was dissolved in DCM (43 mL) to which was added triphenylphosphine (2.7 g, 0.01 mol). The solution was cooled in an ice bath and bromine (1.6 g, 0.01 mol) was added dropwise over 4 h whilst the reaction was maintained at 0-5 C. The reaction was quenched with a saturated aqueous solution of NaHCO3 (15 mL), the DCM layer removed and the aqueous layer extracted with more DCM (50 mL*3). The combined organic layers were dried (Na2SO4) and concentrated to give a yellow solid. The solid was loaded onto silica (1 g) and purified by chromatography (silica, 24 g) eluting with hexane (3CV), 0-100% EtOAc in hexane (40CV) and EtOAc (CV). A clear oil was obtained (1.81 g, 81%). 1H NMR (CDCl3, 600 MHz) δ 7.19 (1H, td, J 1.8, 7.8 Hz), 7.14 (1H, dd, J 1.2, 7.2 Hz), 6.87 (1H, td, J 0.6, 7.2 Hz), 6.84 (1H, d, J 8.4 Hz), 8.31 (3H, s), 3.39 (2H, t, J 6.6 Hz), 2.75 (2H, t, J 7.2 Hz), 2.13 (2H, t, J 7.2 Hz).

 

Historical Records