Structure of 34136-57-7
*Storage: {[sel_prStorage]}
*Shipping: {[sel_prShipping]}
The BI-3802 was designed by Boehringer Ingelheim and could be obtained free of charge through the Boehringer Ingelheim open innovation portal opnMe.com, associated with its negative control.
4.5
*For Research Use Only !
Change View
Size | Price | VIP Price | US Stock |
Global Stock |
In Stock | ||
{[ item.pr_size ]} |
Inquiry
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]} {[ getRatePrice(item.pr_usd,item.pr_rate,1,item.pr_is_large_size_no_price, item.discount_usd) ]} {[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]} |
Inquiry {[ getRatePrice(item.pr_usd,item.pr_rate,item.mem_rate,item.pr_is_large_size_no_price, item.vip_usd) ]} | Inquiry {[ item.pr_usastock ]} In Stock Inquiry - | {[ item.pr_chinastock ]} {[ item.pr_remark ]} In Stock 1-2 weeks - Inquiry - | Login | - + | Inquiry |
Please Login or Create an Account to: See VIP prices and availability
US Stock: ship in 0-1 business day
Global Stock: ship in 5-7 days
1-2weeks
Inquiry
{[ getRatePrice(item.pr_usd,item.pr_rate,item.mem_rate,item.pr_is_large_size_no_price, item.vip_usd) ]}
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]}
{[ getRatePrice(item.pr_usd,1,item.mem_rate,item.pr_is_large_size_no_price, item.pr_usd) ]}
Inquiry
{[ getRatePrice(item.pr_usd,item.pr_rate,1,item.pr_is_large_size_no_price, item.vip_usd) ]}
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]}
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]}
In Stock
- +
Please Login or Create an Account to: See VIP prices and availability
US Stock: ship in 0-1 business day
Global Stock: ship in 2 weeks
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
CAS No. : | 34136-57-7 |
Formula : | C9H9N |
M.W : | 131.17 |
SMILES Code : | N#CC1=CC=CC(CC)=C1 |
MDL No. : | MFCD00045601 |
InChI Key : | WEDBHNMGFLTQNC-UHFFFAOYSA-N |
Pubchem ID : | 96692 |
GHS Pictogram: |
![]() |
Signal Word: | Warning |
Hazard Statements: | H315-H319-H335 |
Precautionary Statements: | P261-P305+P351+P338 |
Num. heavy atoms | 10 |
Num. arom. heavy atoms | 6 |
Fraction Csp3 | 0.22 |
Num. rotatable bonds | 1 |
Num. H-bond acceptors | 1.0 |
Num. H-bond donors | 0.0 |
Molar Refractivity | 40.93 |
TPSA ? Topological Polar Surface Area: Calculated from |
23.79 Ų |
Log Po/w (iLOGP)? iLOGP: in-house physics-based method implemented from |
2.06 |
Log Po/w (XLOGP3)? XLOGP3: Atomistic and knowledge-based method calculated by |
2.47 |
Log Po/w (WLOGP)? WLOGP: Atomistic method implemented from |
2.12 |
Log Po/w (MLOGP)? MLOGP: Topological method implemented from |
2.1 |
Log Po/w (SILICOS-IT)? SILICOS-IT: Hybrid fragmental/topological method calculated by |
2.61 |
Consensus Log Po/w? Consensus Log Po/w: Average of all five predictions |
2.27 |
Log S (ESOL):? ESOL: Topological method implemented from |
-2.59 |
Solubility | 0.339 mg/ml ; 0.00259 mol/l |
Class? Solubility class: Log S scale |
Soluble |
Log S (Ali)? Ali: Topological method implemented from |
-2.61 |
Solubility | 0.319 mg/ml ; 0.00243 mol/l |
Class? Solubility class: Log S scale |
Soluble |
Log S (SILICOS-IT)? SILICOS-IT: Fragmental method calculated by |
-3.24 |
Solubility | 0.0757 mg/ml ; 0.000577 mol/l |
Class? Solubility class: Log S scale |
Soluble |
GI absorption? Gatrointestinal absorption: according to the white of the BOILED-Egg |
High |
BBB permeant? BBB permeation: according to the yolk of the BOILED-Egg |
Yes |
P-gp substrate? P-glycoprotein substrate: SVM model built on 1033 molecules (training set) |
No |
CYP1A2 inhibitor? Cytochrome P450 1A2 inhibitor: SVM model built on 9145 molecules (training set) |
Yes |
CYP2C19 inhibitor? Cytochrome P450 2C19 inhibitor: SVM model built on 9272 molecules (training set) |
No |
CYP2C9 inhibitor? Cytochrome P450 2C9 inhibitor: SVM model built on 5940 molecules (training set) |
No |
CYP2D6 inhibitor? Cytochrome P450 2D6 inhibitor: SVM model built on 3664 molecules (training set) |
No |
CYP3A4 inhibitor? Cytochrome P450 3A4 inhibitor: SVM model built on 7518 molecules (training set) |
No |
Log Kp (skin permeation)? Skin permeation: QSPR model implemented from |
-5.35 cm/s |
Lipinski? Lipinski (Pfizer) filter: implemented from |
0.0 |
Ghose? Ghose filter: implemented from |
None |
Veber? Veber (GSK) filter: implemented from |
0.0 |
Egan? Egan (Pharmacia) filter: implemented from |
0.0 |
Muegge? Muegge (Bayer) filter: implemented from |
2.0 |
Bioavailability Score? Abbott Bioavailability Score: Probability of F > 10% in rat |
0.55 |
PAINS? Pan Assay Interference Structures: implemented from |
0.0 alert |
Brenk? Structural Alert: implemented from |
0.0 alert: heavy_metal |
Leadlikeness? Leadlikeness: implemented from |
No; 1 violation:MW<1.0 |
Synthetic accessibility? Synthetic accessibility score: from 1 (very easy) to 10 (very difficult) |
1.18 |
* All experimental methods are cited from the reference, please refer to the original source for details. We do not guarantee the accuracy of the content in the reference.
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
61% | With (1,2-dimethoxyethane)dichloronickel(II); N,N,N,N,-tetramethylethylenediamine; (4,4'-di-tert-butyl-2,2'-dipyridyl)-bis-(2-phenylpyridine(-1H))-iridium(III) hexafluorophosphate; water; N-ethyl-N,N-diisopropylamine In dimethyl sulfoxide at 80℃; for 24 h; Schlenk technique; Sealed tube; Irradiation | General procedure: Aryl-halide (0.2 mmol, 1 equiv.), Ir(dtbbpy)(ppy)2PF6 (1.8 mg, 0.002 mmol, 1 mol percent), NiCl2.glyme (4.4mg, 0.02 mmol, 10 mol percent), DMSO (2.0 mL) was added to a 10 mL schlenk flask equipped with a magnetic stirrer bar. This resulting mixture was sealed and degassed via vacuum evacuation and subsequent backfill with ethylene for three times. Then, N,N,N’,N’-tetramethylethylenediamine, TMEDA(60 μL, 2 equiv.), N,N-diisopropylethylamine, DIPEA (70 μL, 2 equiv.) and H2O (7.2 μL, 2 equiv.) were subsequently added in this order. The mixture was then irradiated with blue LED (2 meter strip, 18 W)with ethylene balloon for 24 hours at 80oC (Figure S1). The reaction was added water (30 mL) and extracted with ethyl acetate (10 mL) three times. Combined organic layer was successively washed with brine three times and dried over Na2SO4 and concentrated under reduced pressure. The residue was then subjected to flash column chromatography (hexane or hexane/ethyl acetate) to yield theproduct |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
55% | With (1,2-dimethoxyethane)dichloronickel(II); N,N,N,N,-tetramethylethylenediamine; (4,4'-di-tert-butyl-2,2'-dipyridyl)-bis-(2-phenylpyridine(-1H))-iridium(III) hexafluorophosphate; water; N-ethyl-N,N-diisopropylamine In dimethyl sulfoxide at 80℃; for 24 h; Schlenk technique; Sealed tube; Irradiation | General procedure: Aryl-halide (0.2 mmol, 1 equiv.), Ir(dtbbpy)(ppy)2PF6 (1.8 mg, 0.002 mmol, 1 mol percent), NiCl2.glyme (4.4mg, 0.02 mmol, 10 mol percent), DMSO (2.0 mL) was added to a 10 mL schlenk flask equipped with a magnetic stirrer bar. This resulting mixture was sealed and degassed via vacuum evacuation and subsequent backfill with ethylene for three times. Then, N,N,N’,N’-tetramethylethylenediamine, TMEDA(60 μL, 2 equiv.), N,N-diisopropylethylamine, DIPEA (70 μL, 2 equiv.) and H2O (7.2 μL, 2 equiv.) were subsequently added in this order. The mixture was then irradiated with blue LED (2 meter strip, 18 W)with ethylene balloon for 24 hours at 80oC (Figure S1). The reaction was added water (30 mL) and extracted with ethyl acetate (10 mL) three times. Combined organic layer was successively washed with brine three times and dried over Na2SO4 and concentrated under reduced pressure. The residue was then subjected to flash column chromatography (hexane or hexane/ethyl acetate) to yield theproduct |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
62% | at 80℃; for 12 h; | Commercially available 1-brom-3-ethyl-benzene (1.1 g), zinc cyanide (508 mg), tetrakis-(triphenylphospine)palladium (333 mg) were dissolved in dry toluene (8 mL), degassed and stirred at 80° C. in a sealed pressure tube under argon. After 12 h the mixture was concentrated to dryness. The remaining residues was purified by column chromatography (silica, cyclohexane/EtOAc, 95:5) to afford the title compound (470 mg; 62percent). [MH]+=132. |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
76% | With tetrakis(triphenylphosphine) palladium(0) In N,N-dimethyl-formamide at 80℃; for 4 h; Inert atmosphere | (Step 1) A suspension of 1-bromo-3-ethylbenzene (2.00 g, 10.8 mmol), zinc cyanide (698 mg, 5.94 mmol) and tetrakis(triphenylphosphine)palladium (624 mg, 0.540 mmol) in DMF (20 mL) was stirred at 80° C. for 4 hrs. under an argon atmosphere. The reaction mixture was concentrated under reduced pressure and ethanol was added to the concentrated residue. The insoluble material was filtered off and the filtrate was concentrated to give 3-ethylbenzonitrile as a brown oil (1.07 g, 76percent). |
A530286 [2920-38-9]
[1,1'-Biphenyl]-4-carbonitrile
Similarity: 0.96
A530286 [2920-38-9]
[1,1'-Biphenyl]-4-carbonitrile
Similarity: 0.96