Home Cart Sign in  
Chemical Structure| 170491-63-1 Chemical Structure| 170491-63-1

Structure of 170491-63-1

Chemical Structure| 170491-63-1

*Storage: {[sel_prStorage]}

*Shipping: {[sel_prShipping]}

,{[proInfo.pro_purity]}

4.5 *For Research Use Only !

{[proInfo.pro_purity]}
Cat. No.: {[proInfo.prAm]} Purity: {[proInfo.pro_purity]}

Change View

Size Price VIP Price

US Stock

Global Stock

In Stock
{[ item.pr_size ]} Inquiry {[ getRatePrice(item.pr_usd,item.pr_rate,item.mem_rate,item.pr_is_large_size_no_price, item.vip_usd) ]}

US Stock: ship in 0-1 business day
Global Stock: ship in 5-7 days

  • {[ item.pr_size ]}

In Stock

- +

Please Login or Create an Account to: See VIP prices and availability

US Stock: ship in 0-1 business day
Global Stock: ship in 2 weeks

  • 1-2 Day Shipping
  • High Quality
  • Technical Support
Product Citations

Alternative Products

Product Details of [ 170491-63-1 ]

CAS No. :170491-63-1
Formula : C10H19NO3
M.W : 201.26
SMILES Code : CC(C)(C)OC(=O)N1CCCC1CO
MDL No. :MFCD01456556

Safety of [ 170491-63-1 ]

GHS Pictogram:
Signal Word:Warning
Hazard Statements:H315-H319-H335
Precautionary Statements:P261-P305+P351+P338

Computational Chemistry of [ 170491-63-1 ] Show Less

Physicochemical Properties

Num. heavy atoms 14
Num. arom. heavy atoms 0
Fraction Csp3 0.9
Num. rotatable bonds 4
Num. H-bond acceptors 3.0
Num. H-bond donors 1.0
Molar Refractivity 57.75
TPSA ?

Topological Polar Surface Area: Calculated from
Ertl P. et al. 2000 J. Med. Chem.

49.77 Ų

Lipophilicity

Log Po/w (iLOGP)?

iLOGP: in-house physics-based method implemented from
Daina A et al. 2014 J. Chem. Inf. Model.

2.47
Log Po/w (XLOGP3)?

XLOGP3: Atomistic and knowledge-based method calculated by
XLOGP program, version 3.2.2, courtesy of CCBG, Shanghai Institute of Organic Chemistry

0.98
Log Po/w (WLOGP)?

WLOGP: Atomistic method implemented from
Wildman SA and Crippen GM. 1999 J. Chem. Inf. Model.

1.0
Log Po/w (MLOGP)?

MLOGP: Topological method implemented from
Moriguchi I. et al. 1992 Chem. Pharm. Bull.
Moriguchi I. et al. 1994 Chem. Pharm. Bull.
Lipinski PA. et al. 2001 Adv. Drug. Deliv. Rev.

0.86
Log Po/w (SILICOS-IT)?

SILICOS-IT: Hybrid fragmental/topological method calculated by
FILTER-IT program, version 1.0.2, courtesy of SILICOS-IT, http://www.silicos-it.com

0.65
Consensus Log Po/w?

Consensus Log Po/w: Average of all five predictions

1.19

Water Solubility

Log S (ESOL):?

ESOL: Topological method implemented from
Delaney JS. 2004 J. Chem. Inf. Model.

-1.44
Solubility 7.29 mg/ml ; 0.0362 mol/l
Class?

Solubility class: Log S scale
Insoluble < -10 < Poorly < -6 < Moderately < -4 < Soluble < -2 Very < 0 < Highly

Very soluble
Log S (Ali)?

Ali: Topological method implemented from
Ali J. et al. 2012 J. Chem. Inf. Model.

-1.61
Solubility 4.9 mg/ml ; 0.0244 mol/l
Class?

Solubility class: Log S scale
Insoluble < -10 < Poorly < -6 < Moderately < -4 < Soluble < -2 Very < 0 < Highly

Very soluble
Log S (SILICOS-IT)?

SILICOS-IT: Fragmental method calculated by
FILTER-IT program, version 1.0.2, courtesy of SILICOS-IT, http://www.silicos-it.com

-0.83
Solubility 29.8 mg/ml ; 0.148 mol/l
Class?

Solubility class: Log S scale
Insoluble < -10 < Poorly < -6 < Moderately < -4 < Soluble < -2 Very < 0 < Highly

Soluble

Pharmacokinetics

GI absorption?

Gatrointestinal absorption: according to the white of the BOILED-Egg

High
BBB permeant?

BBB permeation: according to the yolk of the BOILED-Egg

Yes
P-gp substrate?

P-glycoprotein substrate: SVM model built on 1033 molecules (training set)
and tested on 415 molecules (test set)
10-fold CV: ACC=0.72 / AUC=0.77
External: ACC=0.88 / AUC=0.94

No
CYP1A2 inhibitor?

Cytochrome P450 1A2 inhibitor: SVM model built on 9145 molecules (training set)
and tested on 3000 molecules (test set)
10-fold CV: ACC=0.83 / AUC=0.90
External: ACC=0.84 / AUC=0.91

No
CYP2C19 inhibitor?

Cytochrome P450 2C19 inhibitor: SVM model built on 9272 molecules (training set)
and tested on 3000 molecules (test set)
10-fold CV: ACC=0.80 / AUC=0.86
External: ACC=0.80 / AUC=0.87

No
CYP2C9 inhibitor?

Cytochrome P450 2C9 inhibitor: SVM model built on 5940 molecules (training set)
and tested on 2075 molecules (test set)
10-fold CV: ACC=0.78 / AUC=0.85
External: ACC=0.71 / AUC=0.81

No
CYP2D6 inhibitor?

Cytochrome P450 2D6 inhibitor: SVM model built on 3664 molecules (training set)
and tested on 1068 molecules (test set)
10-fold CV: ACC=0.79 / AUC=0.85
External: ACC=0.81 / AUC=0.87

No
CYP3A4 inhibitor?

Cytochrome P450 3A4 inhibitor: SVM model built on 7518 molecules (training set)
and tested on 2579 molecules (test set)
10-fold CV: ACC=0.77 / AUC=0.85
External: ACC=0.78 / AUC=0.86

No
Log Kp (skin permeation)?

Skin permeation: QSPR model implemented from
Potts RO and Guy RH. 1992 Pharm. Res.

-6.83 cm/s

Druglikeness

Lipinski?

Lipinski (Pfizer) filter: implemented from
Lipinski CA. et al. 2001 Adv. Drug Deliv. Rev.
MW ≤ 500
MLOGP ≤ 4.15
N or O ≤ 10
NH or OH ≤ 5

0.0
Ghose?

Ghose filter: implemented from
Ghose AK. et al. 1999 J. Comb. Chem.
160 ≤ MW ≤ 480
-0.4 ≤ WLOGP ≤ 5.6
40 ≤ MR ≤ 130
20 ≤ atoms ≤ 70

None
Veber?

Veber (GSK) filter: implemented from
Veber DF. et al. 2002 J. Med. Chem.
Rotatable bonds ≤ 10
TPSA ≤ 140

0.0
Egan?

Egan (Pharmacia) filter: implemented from
Egan WJ. et al. 2000 J. Med. Chem.
WLOGP ≤ 5.88
TPSA ≤ 131.6

0.0
Muegge?

Muegge (Bayer) filter: implemented from
Muegge I. et al. 2001 J. Med. Chem.
200 ≤ MW ≤ 600
-2 ≤ XLOGP ≤ 5
TPSA ≤ 150
Num. rings ≤ 7
Num. carbon > 4
Num. heteroatoms > 1
Num. rotatable bonds ≤ 15
H-bond acc. ≤ 10
H-bond don. ≤ 5

0.0
Bioavailability Score?

Abbott Bioavailability Score: Probability of F > 10% in rat
implemented from
Martin YC. 2005 J. Med. Chem.

0.55

Medicinal Chemistry

PAINS?

Pan Assay Interference Structures: implemented from
Baell JB. & Holloway GA. 2010 J. Med. Chem.

0.0 alert
Brenk?

Structural Alert: implemented from
Brenk R. et al. 2008 ChemMedChem

0.0 alert: heavy_metal
Leadlikeness?

Leadlikeness: implemented from
Teague SJ. 1999 Angew. Chem. Int. Ed.
250 ≤ MW ≤ 350
XLOGP ≤ 3.5
Num. rotatable bonds ≤ 7

No; 1 violation:MW<1.0
Synthetic accessibility?

Synthetic accessibility score: from 1 (very easy) to 10 (very difficult)
based on 1024 fragmental contributions (FP2) modulated by size and complexity penaties,
trained on 12'782'590 molecules and tested on 40 external molecules (r2 = 0.94)

2.64

Application In Synthesis of [ 170491-63-1 ]

* All experimental methods are cited from the reference, please refer to the original source for details. We do not guarantee the accuracy of the content in the reference.

  • Downstream synthetic route of [ 170491-63-1 ]

[ 170491-63-1 ] Synthesis Path-Downstream   1~2

  • 1
  • [ 58632-95-4 ]
  • [ 498-63-5 ]
  • [ 170491-63-1 ]
  • 2
  • [ 24424-99-5 ]
  • [ 498-63-5 ]
  • [ 170491-63-1 ]
YieldReaction ConditionsOperation in experiment
98% In dichloromethane; at 20℃; for 16h; Step 1. Synthesis of tert-butyl 2-(hydroxymethyl)pyrrolidine-1-carboxylate A solution of 2-pyrrolidinemethanol (0.300 g, 1.98 mmol) in CH2Cl2 (5.0 mL) and di-tert-butyl dicarbonate (0.650 g, 1.98 mmol) were used to carry out the reaction. After the reaction was stirred at room temperature for 16 h and work-up, the residue was purified by Isco Combi-Flash Companion column chromatography (0-10percent MeOH in CH2Cl2) to give tert-butyl 2-(hydroxymethyl)pyrrolidine-1-carboxylate (0.590 g, 98percent). 1H NMR (CDCl3, 300 MHz) delta 4.78 (br d, 1H), 4.05-3.90 (br, 1H), 3.67-3.53 (m, 2H), 3.49-3.41 (m, 1H), 3.34-3.26 (m, 1H), 2.00 (dddd, 1H), 1.85-1.72 (m, 2H), 1.60-1.50 (m, 1H), 1.46 (s, 9H).
90% With triethylamine; In dichloromethane; at 20℃; Step 1 Preparation of tert-butyl 2-(hydroxymethyl) pyrrolidine-1-carboxylate To a stirred mixture of pyrrolidin-2-ylmethanol (0.500 g, 4.95 mmol) and di-tert-butyl dicarbonate (2.16 g, 9.89 mmol) in DCM (10 mL) was added triethylamine (0.751 g, 7.42 mmol). The system was stirred at room temperature overnight. The reaction was quenched with water (10 mL) and extracted with EtOAc (20 mL*3). The combined organic layer was washed with brine (10 mL), dried over anhydrous sodium sulfate, filtered and concentrated in vacuo to afford tert-butyl 2-(hydroxymethyl)pyrrolidine-1-carboxylate (0.900 g, 90percent) as light yellow oil.
48% With triethylamine; In dichloromethane; at 20℃; for 3h; To a solution of pyrrolidin-2-ylmethanol (505 mg, 4.99 mmol) and TEA (1.0 g, 9.9 mmol) in CH2Cl2 (5 mL) was added a solution of BoC2O (1.31 g, 6 mmol) in CH2Cl2 (10 mL). The reaction mixture was stirred for 3 h at room temperature. The reaction mixture was quenched with water (100 mL) and extracted with CH2Cl2, The organic layer was washed with brine, dried over Na2Spsi4, filtered, and concentrated under reduced pressure to give the crude material that was purified by silica gel flash column chromatography (MeOHiCH2Cl2 = 1: 100) to afford 14.2 g (48percent) of tert-butyl 2- (hydroxymethyl)pyrrolidine-l-carboxylate. LCMS ESI (+) m/z 202 (M+ 1) detected.
With potassium carbonate; In diethyl ether; water; at 20℃; for 16h; To a solution of DL-proline (10.0 g, 86.9 mmol) in THF (20 mL) were added boron trifluoride etherate complex (12.9 g, 91.2 mmol) and borane-tetrahydrofuran (1.0 mol/L THF solution, 100 mL) at 0°C, and the mixture was stirred at room temperature for 16 hr. After completion of the reaction, the mixture was further heated under reflux for 1 hr and cooled to room temperature. THF-water (1:1, 2.5 mL) and 6N sodium hydroxide were successively added to the reaction solution, and the mixture was heated under reflux for 2 hr. The reaction solution was cooled to room temperature, and concentrated under reduced pressure. The residue was washed with diethyl ether. The remaining residue, di-tert-butyl dicarbonate (19.9 g, 91.2 mmol) and potassium carbonate (36.0 g, 260 mmol) were dissolved in diethyl ether-water (100 mL-150 mL), and the mixture was stirred at room temperature for 16 hr. The diethyl ether layer was separated and washed with saturated brine, dried over anhydrous magnesium sulfate, and filtered. The filtrate was concentrated under reduced pressure. The obtained residue was purified by silica gel column chromatography (hexane-ethyl acetate 95:5 - 60:40 - 50:50) to give the title compound (13.6 g, 76percent) as a colorless oil. 1H NMR (300 MHz, CDCl3) delta 4.74 (d like, 1H), 3.96 (br s, 1H), 3.74-3.21 (m, 4H), 2.13-1.67 (m, 4H), 1.49 (s, 9H).
Maleic acid (2.86g, 24.72 mmol) was added to pyrrolidin-2-ylmethanol(2.5g, 24.72 mmol) (A.170) in ethyl acetate (10 mL). The resultant mixture was stirred at room temperature for 2 hrs. After concentration, NaHCO3(10.38g, 123.6 mmol) in water (16 mL) was added to the residue. (BOC)2O (6.47 g, 29.66 mmol) was then added. The mixture was stirred at room temperature for 16 hrs. After removing solid by filtration, the aqueous solution was extracted with ethyl acetate. The organics were dried and concentrated, gave crude N-BOC protected pyrrolidin-2-ylmethanol. To the crude N-BOC protected pyrrolidin-2-ylmethanol(2.5g, 12.43mmol) and triethylamine (4.16ml, 29.82 mmol) in ethyl acetate at O0C, MsCl(1.16 mL, 14.91 mmol) was added and the mixture was stirred at 0°C for 2 hrs. The reaction was quenched with water and extracted with ethyl acetate. The organics were washed with 2N HCl, water, Sat. aq. NaHCO3, and brine, dried and concentrated. A portion of the residue(257.6 mg, 0.924mmol) was added to a mixture Of Cs2CO3 ( 301.1 mg, 0.924 mmol) and 4-(5-bromo-lH-indol-3-yl)-5-chloropyrimidin-2-amine A.170 (100 mg, 0.308 mmol) in DMF (1 mL) and DMSO(I mL). The mixture was heated at 110 0C for 16 hrs. After cooling to room temperature, the mixture was diluted with ether, washed with water and brine, dried and concentrated. A portion of the residue (68.5mg, 0.135 mmol) was dissolved in dichloromethane (8 mL) and TFA (2mL) then was added. The mixture was stirred at room temperature for 1 hr, concentrated and diluted with methanol-dichloromethane (1 :9). The solution was washed with Sat. aq. NaHCO3, and brine, dried and concentrated to afford 4-(5- bromo-l-(pyrrolidin-2-ylmethyl)-lH-indol-3-yl)-5-chloropyrimidin-2-amine (A.178) (32.0 mg, 58percent): 1H NMR (methanol- d4) b 8.78(s, 1 H), 8.43(s, 1 H), 8.15(s, 1 H), 7.42 (d, J= 8.0 Hz, 1 <n="98"/>H), 7.38(d, J= 8.0 Hz, 1 H), 4.29-4.15(m, 2 H), 3.55-3.45(m, 1 H), 3.00-2.95(m, 1 H), 2.90- 2.85(m, 1 H)), 1.92-1.80(m, 2 H), 1.80-1.72(m, 1 H), 1.55-1.46(m, 1 H); ms 406.0 (M+H+).

 

Historical Records

Technical Information

Categories