Home Cart 0 Sign in  
X

[ CAS No. 1402401-43-7 ] {[proInfo.proName]}

,{[proInfo.pro_purity]}
Cat. No.: {[proInfo.prAm]}
3d Animation Molecule Structure of 1402401-43-7
Chemical Structure| 1402401-43-7
Chemical Structure| 1402401-43-7
Structure of 1402401-43-7 * Storage: {[proInfo.prStorage]}

Please Login or Create an Account to: See VIP prices and availability

Cart0 Add to My Favorites Add to My Favorites Bulk Inquiry Inquiry Add To Cart

Search after Editing

* Storage: {[proInfo.prStorage]}

* Shipping: {[proInfo.prShipping]}

Quality Control of [ 1402401-43-7 ]

Related Doc. of [ 1402401-43-7 ]

Alternatived Products of [ 1402401-43-7 ]
Product Citations

Product Details of [ 1402401-43-7 ]

CAS No. :1402401-43-7 MDL No. :N/A
Formula : C5H5N3O2 Boiling Point : -
Linear Structure Formula :- InChI Key :BBHKKABSLSRNKR-UHFFFAOYSA-N
M.W : 139.11 Pubchem ID :118107998
Synonyms :

Safety of [ 1402401-43-7 ]

Signal Word:Warning Class:
Precautionary Statements:P264-P280-P302+P352-P337+P313-P305+P351+P338-P362+P364-P332+P313 UN#:
Hazard Statements:H315-H319 Packing Group:
GHS Pictogram:
Recommend Products
Same Skeleton Products

Technical Information

• 1,4-Addition of an Amine to a Conjugated Enone • 1,4-Addition of an Amine to a Conjugated Enone • 1,4-Additions of Organometallic Reagents • Acetal Formation • Add Hydrogen Cyanide to Aldehydes and Ketones to Produce Alcohols • Alcohol Syntheses from Aldehydes, Ketones and Organometallics • Aldehydes and Ketones Form Hemiacetals Reversibly • Aldehydes May Made by Terminal Alkynes Though Hydroboration-oxidation • Aldol Addition • Aldol Condensation • Alkenes React with Ozone to Produce Carbonyl Compounds • Alkylation of Aldehydes or Ketones • Amides Can Be Converted into Aldehydes • Amine Synthesis from Nitriles • Amine Synthesis from Nitriles • Amines Convert Acyl Chlorides into Amides • Amines Convert Esters into Amides • Azide Reduction by LiAlH4 • Azide Reduction by LiAlH4 • Barbier Coupling Reaction • Basicity of Amines • Baylis-Hillman Reaction • Bucherer-Bergs Reaction • Buchwald-Hartwig C-N Bond and C-O Bond Formation Reactions • Chan-Lam Coupling Reaction • Chichibabin Reaction • Clemmensen Reduction • Complex Metal Hydride Reductions • Conjugated Enone Takes Part in 1,4-Additions • Convert Aldonic Acid into the Lower Aldose by Oxidative Decarboxylation • Convert Esters into Aldehydes Using a Milder Reducing Agent • Corey-Chaykovsky Reaction • Corey-Fuchs Reaction • Cyanohydrins can be Convert to Carbonyl Compounds under Basic Conditions • Deoxygenation of the Carbonyl Group • Deprotonation of a Carbonyl Compound at the α -Carbon • Diazotization Reaction • DIBAL Attack Nitriles to Give Ketones • Dithioacetal Formation • Enamine Formation • Enamines Can Be Used to Prepare Alkylated Aldehydes • Enol-Keto Equilibration • Exclusive 1,4-Addition of a Lithium Organocuprate • Fischer Indole Synthesis • Formation of an Amide from an Amine and a Carboxylic Acid • Formation of an Amide from an Amine and a Carboxylic Acid • Grignard Reaction • Hantzsch Dihydropyridine Synthesis • Hemiaminal Formation from Amines and Aldehydes or Ketones • Hemiaminal Formation from Amines and Aldehydes or Ketones • Henry Nitroaldol Reaction • HIO4 Oxidatively Degrades Vicinal Diols to Give Carbonyl Derivatives • Hofmann Elimination • Hofmann Rearrangement • Horner-Wadsworth-Emmons Reaction • Hydration of the Carbonyl Group • Hydride Reductions • Hydride Reductions of Aldehydes and Ketones to Alcohols • Hydride Reductions of Aldehydes and Ketones to Alcohols • Hydroboration of a Terminal Alkyne • Hydrogenation by Palladium on Carbon Gives the Saturated Carbonyl Compound • Hydrolysis of Imines to Aldehydes and Ketones • Imine Formation from Amines and Aldehydes or Ketones • Julia-Kocienski Olefination • Knoevenagel Condensation • Leuckart-Wallach Reaction • Lithium Organocuprate may Add to the α ,β -Unsaturated Carbonyl Function in 1,4-Fashion • Mannich Reaction • McMurry Coupling • Meerwein-Ponndorf-Verley Reduction • Methylation of Ammonia • Methylation of Ammonia • Mukaiyama Aldol Reaction • Nitrosation of Amines • Nozaki-Hiyama-Kishi Reaction • Oxidation of Alcohols to Carbonyl Compounds • Oxidation of Aldehydes Furnishes Carboxylic Acids • Passerini Reaction • Paternò-Büchi Reaction • Peptide Bond Formation with DCC • Periodic Acid Degradation of Sugars • Petasis Reaction • Phenylhydrazone and Phenylosazone Formation • Pictet-Spengler Tetrahydroisoquinoline Synthesis • Preparation of Aldehydes and Ketones • Preparation of Amines • Preparation of LDA • Prins Reaction • Pyrroles, Furans, and Thiophenes are Prepared from γ-Dicarbonyl Compounds • Reactions of Aldehydes and Ketones • Reactions of Amines • Reduction of an Amide to an Amine • Reduction of an Amide to an Amine • Reduction of an Ester to an Aldehyde • Reductive Amination • Reductive Amination • Reformatsky Reaction • Ring Opening of Azacyclopropanes • Ring Opening of Azacyclopropanes • Ring Opening of Oxacyclobutanes • Schlosser Modification of the Wittig Reaction • Schmidt Reaction • Selective Eduction of Acyl Chlorides to Produce Aldehydes • Specialized Acylation Reagents-Vilsmeier Reagent • Stetter Reaction • Stobbe Condensation • Strecker Synthesis • Synthesis of 2-Amino Nitriles • Tebbe Olefination • The Cycloaddition of Dienes to Alkenes Gives Cyclohexenes • The Wittig Reaction • Thiazolium Salt Catalysis in Aldehyde Coupling • Thiazolium Salts Catalyze Aldehyde Coupling • Thiazolium Salts Catalyze Aldehyde Coupling • Ugi Reaction • Use 1,3-dithiane to Prepare of α-Hydroxyketones • Wittig Reaction • Wolff-Kishner Reduction
Historical Records
; ;