Structure of 139986-03-1
*Storage: {[sel_prStorage]}
*Shipping: {[sel_prShipping]}
The BI-3802 was designed by Boehringer Ingelheim and could be obtained free of charge through the Boehringer Ingelheim open innovation portal opnMe.com, associated with its negative control.
4.5
*For Research Use Only !
Change View
Size | Price | VIP Price | US Stock |
Global Stock |
In Stock | ||
{[ item.pr_size ]} |
Inquiry
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]} {[ getRatePrice(item.pr_usd,item.pr_rate,1,item.pr_is_large_size_no_price, item.discount_usd) ]} {[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]} |
Inquiry {[ getRatePrice(item.pr_usd,item.pr_rate,item.mem_rate,item.pr_is_large_size_no_price, item.vip_usd) ]} | Inquiry {[ item.pr_usastock ]} In Stock Inquiry - | {[ item.pr_chinastock ]} {[ item.pr_remark ]} In Stock 1-2 weeks - Inquiry - | Login | - + | Inquiry |
Please Login or Create an Account to: See VIP prices and availability
US Stock: ship in 0-1 business day
Global Stock: ship in 5-7 days
1-2weeks
Inquiry
{[ getRatePrice(item.pr_usd,item.pr_rate,item.mem_rate,item.pr_is_large_size_no_price, item.vip_usd) ]}
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]}
{[ getRatePrice(item.pr_usd,1,item.mem_rate,item.pr_is_large_size_no_price, item.pr_usd) ]}
Inquiry
{[ getRatePrice(item.pr_usd,item.pr_rate,1,item.pr_is_large_size_no_price, item.vip_usd) ]}
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]}
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price, item.pr_usd) ]}
In Stock
- +
Please Login or Create an Account to: See VIP prices and availability
US Stock: ship in 0-1 business day
Global Stock: ship in 2 weeks
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
Search for reports by entering the product batch number.
Batch number can be found on the product's label following the word 'Batch'.
CAS No. : | 139986-03-1 |
Formula : | C16H23NO5S |
M.W : | 341.42 |
SMILES Code : | O=C(N1C[C@H](OS(=O)(C2=CC=C(C)C=C2)=O)CC1)OC(C)(C)C |
MDL No. : | MFCD16621198 |
InChI Key : | MWACHFODPQVXHF-CYBMUJFWSA-N |
Pubchem ID : | 23560883 |
GHS Pictogram: |
![]() |
Signal Word: | Warning |
Hazard Statements: | H302-H315-H319-H335 |
Precautionary Statements: | P261-P305+P351+P338 |
Num. heavy atoms | 23 |
Num. arom. heavy atoms | 6 |
Fraction Csp3 | 0.56 |
Num. rotatable bonds | 6 |
Num. H-bond acceptors | 5.0 |
Num. H-bond donors | 0.0 |
Molar Refractivity | 90.45 |
TPSA ? Topological Polar Surface Area: Calculated from |
81.29 Ų |
Log Po/w (iLOGP)? iLOGP: in-house physics-based method implemented from |
3.3 |
Log Po/w (XLOGP3)? XLOGP3: Atomistic and knowledge-based method calculated by |
2.65 |
Log Po/w (WLOGP)? WLOGP: Atomistic method implemented from |
3.41 |
Log Po/w (MLOGP)? MLOGP: Topological method implemented from |
2.26 |
Log Po/w (SILICOS-IT)? SILICOS-IT: Hybrid fragmental/topological method calculated by |
1.44 |
Consensus Log Po/w? Consensus Log Po/w: Average of all five predictions |
2.61 |
Log S (ESOL):? ESOL: Topological method implemented from |
-3.42 |
Solubility | 0.129 mg/ml ; 0.000377 mol/l |
Class? Solubility class: Log S scale |
Soluble |
Log S (Ali)? Ali: Topological method implemented from |
-4.01 |
Solubility | 0.0335 mg/ml ; 0.0000981 mol/l |
Class? Solubility class: Log S scale |
Moderately soluble |
Log S (SILICOS-IT)? SILICOS-IT: Fragmental method calculated by |
-3.53 |
Solubility | 0.101 mg/ml ; 0.000294 mol/l |
Class? Solubility class: Log S scale |
Soluble |
GI absorption? Gatrointestinal absorption: according to the white of the BOILED-Egg |
High |
BBB permeant? BBB permeation: according to the yolk of the BOILED-Egg |
No |
P-gp substrate? P-glycoprotein substrate: SVM model built on 1033 molecules (training set) |
No |
CYP1A2 inhibitor? Cytochrome P450 1A2 inhibitor: SVM model built on 9145 molecules (training set) |
No |
CYP2C19 inhibitor? Cytochrome P450 2C19 inhibitor: SVM model built on 9272 molecules (training set) |
Yes |
CYP2C9 inhibitor? Cytochrome P450 2C9 inhibitor: SVM model built on 5940 molecules (training set) |
Yes |
CYP2D6 inhibitor? Cytochrome P450 2D6 inhibitor: SVM model built on 3664 molecules (training set) |
No |
CYP3A4 inhibitor? Cytochrome P450 3A4 inhibitor: SVM model built on 7518 molecules (training set) |
No |
Log Kp (skin permeation)? Skin permeation: QSPR model implemented from |
-6.5 cm/s |
Lipinski? Lipinski (Pfizer) filter: implemented from |
0.0 |
Ghose? Ghose filter: implemented from |
None |
Veber? Veber (GSK) filter: implemented from |
0.0 |
Egan? Egan (Pharmacia) filter: implemented from |
0.0 |
Muegge? Muegge (Bayer) filter: implemented from |
0.0 |
Bioavailability Score? Abbott Bioavailability Score: Probability of F > 10% in rat |
0.55 |
PAINS? Pan Assay Interference Structures: implemented from |
0.0 alert |
Brenk? Structural Alert: implemented from |
1.0 alert: heavy_metal |
Leadlikeness? Leadlikeness: implemented from |
No; 1 violation:MW<0.0 |
Synthetic accessibility? Synthetic accessibility score: from 1 (very easy) to 10 (very difficult) |
3.71 |
* All experimental methods are cited from the reference, please refer to the original source for details. We do not guarantee the accuracy of the content in the reference.
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
100% | With triethylamine;dmap; In dichloromethane; at 20℃; for 8h; | The above alcohol (7.3 g, 39 mmol), p-TsCl (8.2 g, 43 mmol), Et3N (9.8 g, 97 mmol), DMAP (240 mg) in CH2Cl2 (100 mL) were allowed to stirr for 8 hours at room temperature. Then the reaction mixture was washed with brine (100 mL). The organic layer was dried over anhydrous Na2SO4 and evaporated. Purification of the resulting crude by flash silica gel chromatography provided the ester in quantitative yield |
94% | With dmap; triethylamine; In dichloromethane; at 20℃; for 12h; | Compound (R) -3-hydroxypyrrolidine-1-carboxylic acid third butyl ester 1a (3.5g, 18.7mmol), triethylamine (5.25mL, 37.9mmol), 4-dimethylaminopyridine (0.35g, 2.87mmol) were dissolved in dichloromethane (50mL), and p-toluenesulfonyl chloride (5.4 g, 28.1 mmol), and the reaction mixture was stirred at room temperature for 12 hours.Dilute with water (50 mL) and extract with ethyl acetate (100 mL x 3).The organic phases were combined and dried over anhydrous sodium sulfate, filtered to remove the drying agent, and the solvent was removed under reduced pressure. The residue was purified by silica gel column chromatography (petroleum ether / ethyl acetate = 2/1) to obtain the target product (R)- 3- (Toluenesulfonyloxo) pyrrolidine-1-carboxylic acid third butyl ester 1b (6.0 g, yellow oil), yield: 94%. |
82.8% | With dmap; triethylamine; In dichloromethane; at 0 - 20℃; | Intermediate (ix); 3-(3R)-(Toluene-4-sulfonyloxy)-pyrrolidine-l-carboxylic acid tert-butyl ester; A round-bottomed flask was charged with p-toluenesulfonyl chloride (16.01 g, 83.98 mmol, 1.5 equiv.) and 150 ml of anhydrous DCM. The solution was cooled to an ice-water bath and evacuated and purged with nitrogen. To this solution was added a solution of (3R)- (-)-N-BOC-3-hydroxypyrrolidine (purchased from Aldrich) (10.47 g, 55.99 mmol) in 50 mL of DCM, followed by DMAP (0.66 g) and triethylamine (16.2 mL). The solution was stirred under nitrogen overnight from O0C to rt. TLC (5 % MeOH in DCM) showed the completion of the reaction. The reaction was quenched by addition of polymer-supported amine (8 g), stirred 30 min. 100 mL of DCM was added. The organic layer was washed with H3PO4 (IM, 2 x 5OmL), followed by NaHCO3 (50 mL), brine (50 mL), dried (K2CO3), filtered through a silica gel pad, and concentrated to obtain the title compound as a liquid, 15.82 g (82.8 %). MS: 363 (M+Na+); TLC (DCM) Rf= 0.3. 1H NMR (CDCl3, 300MHz): 7.80 (d, 9.0Hz, 2H), 7.35 (d, 7.8Hz, 2H), 5.04 (bs, IH), 3.45 (m, 4H), 2.46 (bs, 3H), 2.05 (m, 2H), 1.43 (s, 9H). |
82.8% | With dmap; triethylamine; In dichloromethane; at 0 - 20℃; | Intermediate (v); 3-(3R)-(Toluene-4-sulfonyloxy)-pyrrolidine-l-carboxylic acid tert-butyl ester; A round-bottomed flask was charged with p-toluenesulfonyl chloride (16.01 g, 83.98 mmol, 1.5 equiv.) and 150 ml of anhydrous DCM. The solution was cooled to an ice-water bath and evacuated and purged with nitrogen. To this solution was added a solution of (3R)-(- )-N-BOC-3-hydroxypyrrolidine (purchased from Aldrich, 10.47 g, 55.99 mmol) in 50 mL of DCM, followed by DMAP (0.66 g) and triethylamine (16.2 mL). The solution was stirred under nitrogen overnight at a temperature from about 0 C to rt. TLC (5% MeOH in DCM for SM and DCM for product) showed the completion of the reaction. The reaction was quenched by addition of polymer-supported amine (8 g), stirred for 30 min. and 100 mL of DCM was added. The organic layer was washed with H3PO4 (IM, 2 x 5OmL), followed by <n="27"/>NaHCθ3 (50 mL), brine (50 mL), dried (K2CO3), filtered through a silica gel pad, and concentrated to obtain the title compound as a liquid, 15.82 g (82.8 %). MS: 363 (M+Na+); TLC (DCM) Rf= 0.3.1H NMR (CDCl3, 300MHz), δ (ppm): 7.80 (d, 9.0Hz, 2H), 7.35 (d, 7.8Hz, 2H), 5.04 (bs, IH), 3.45 (m, 4H), 2.46 (bs, 3H), 2.05 (m, 2H), 1.43 (s, 9H). |
82.8% | With dmap; triethylamine; In dichloromethane; at 0 - 20℃; | Intermediate (ix); 3-(3R)-(Toluene-4-sulfonyloxy)-pyrrolidine-l-carboxylic acid tert-butyl ester; A round-bottomed flask was charged with p-toluenesulfonyl chloride (16.01 g, 83.98 mmol, 1.5 equiv.) and 150 ml of anhydrous DCM. The solution was cooled to an ice-water bath and evacuated and purged with nitrogen. To this solution was added a solution of (3R)- (-)-N-BOC-3-hydroxypyrrolidine (purchased from Aldrich) (10.47 g, 55.99 mmol) in 50 mL of DCM, followed by DMAP (0.66 g) and triethylamine (16.2 mL). The solution was stirred under nitrogen overnight from O0C to rt. TLC (5 % MeOH in DCM) showed the completion of the reaction. The reaction was quenched by addition of polymer-supported amine (8 g), stirred 30 min. 100 mL of DCM was added. The organic layer was washed with H3PO4 (IM, 2 x 5OmL), followed by NaHCO3 (50 mL), brine (50 mL), dried (K2CO3), filtered through a silica gel pad, and concentrated to obtain the title compound as a liquid, 15.82 g (82.8 %). MS: 363 (M+Na+); TLC (DCM) Rf= 0.3. 1H NMR (CDCl3, 300MHz): 7.80 (d, 9.0Hz, 2H), 7.35 (d, 7.8Hz, 2H), 5.04 (bs, IH), 3.45 (m, 4H), 2.46 (bs, 3H), 2.05 (m, 2H), 1.43 (s, 9H). |
75% | With dmap; triethylamine; In dichloromethane; at 20℃;Cooling with ice; | Intermediate (iii) (R)-3-(Toluene-4-sulfonyloxy)-pyrrolidine-1-carboxylic acid tert-butyl ester To a 2L round-bottom flask equipped with a mechanical stirring rod and a250ml addition funnel was added p-tosyl chloride (58g, 305mmol, 1.5eq) and 600ml of anhydrous DCM. The solution was cooled with ice-water bath. Et3N (65ml) and DMAP (2.65g) were added. A solution of (R)-3-(-)-N-Boc-hydroxy pyrrolidine (38g, 203 mmol, 1.0eq) in 200 ml of DCM was added slowly. The reaction mixture was allowed to stir at room temperature over night. TLC showed completion of the reaction. The product had an Rf value of 0.3 (TLC developed in DCM). The reaction was cooled by ice-water bath. Polymer-supported trisamine (32g) was added and stirred for 30 min. Trisamine bead was filtered and rinsed with 300-400 mL of DCM. The organic solution was washed with 200 mL of H3PO4 (1 M) solution twice, followed by saturated NaHCO3 solution (200 mL), and brine (200 mL). The organic phase was dried over K2CO3. After concentration, the crude product was purified by a 75Og silica gel cartridge (DCM to 5% MeOH in DCM) to afford the title compound as a beige oil (52g, 75%). MS: 363 (M+Na+); TLC (DCM) Rf = 0.3.1H NMR (CDCI3, 300MHz), δ (ppm): 7.80 (d, 9.0Hz, 2H), 7.35 (d, 7.8Hz, 2H), 5.04 (bs, 1 H), 3.45 (m, 4H), 2.46 (bs, 3H), 2.05 (m, 2H), 1.43 (s, 9H). |
75% | With dmap; triethylamine; In dichloromethane; at 20℃;Cooling with ice-water bath; | Intermediate (ix)(R)-3-(Toluene-4-sulfon loxy)-pyrrolidine-1 -carboxylic acid tert-butyl esterTo a 2L round-bottom flask equipped with a mechanical stirring rod and a 250 ml addition funnel was added p-tosyl chloride (58 g, 305mmol, 1 .5 eq) and 600 ml of anhydrous DCM. The solution was cooled with ice-water bath. Et3N (65 ml) and DMAP (2.65 g) were added. A solution of (R)-3-(-)-N-Boc-hydroxy pyrrolidine (38 g, 203 mmol, 1 .0 eq) in 200 ml of DCM was added slowly. The reaction mixture was allowed to stir at room temperature over night. TLC showed completion of the reaction. The product had an Rf value of 0.3 (TLC developed in DCM). The reaction was cooled by ice-water bath. Polymer-supported trisamine (32 g) was added and stirred for 30 min. Trisamine bead was filtered and rinsed with 300-400 mL of DCM. The organic solution was washed with 200 mL of H3PO4 (1 M) solution twice, followed by saturated NaHCO3 solution (200 mL), and brine (200 mL). The organic phase was dried over K2CO3. After concentration, the crude product was purified by a 750 g silica gel cartridge (DCM to 5% MeOH in DCM) to afford the title compound as a beige oil (52g, 75%).MS: 363 (M+Na+); TLC (DCM) Rf = 0.3.1H NMR (CDCIs, 300MHz), δ (ppm): 7.80 (d, 9.0Hz, 2H), 7.35 (d, 7.8Hz, 2H), 5.04 (bs, 1 H), 3.45 (m, 4H), 2.46 (bs, 3H), 2.05 (m, 2H), 1 .43 (s, 9H). |
75% | With dmap; triethylamine; In dichloromethane; at 20℃;Cooling with ice; | Intermediate (v)(R)-3-(Toluene-4-sulfonyloxy)-pyrrolidine-1 -carboxylic acid tert-butyl ester To a 2L round-bottom flask equipped with a mechanical stirring rod and a 250 ml addition funnel was added p-tosyl chloride (58 g, 305 mmol, 1 .5 eq) and 600 ml of anhydrous DCM. The solution was cooled with ice-water bath. Et3N (65 ml) and DMAP (2.65 g) were added. A solution of (R)-3-(-)-N-Boc-hydroxy pyrrolidine (38 g, 203 mmol, 1 eq) in 200 ml of DCM was added slowly. The reaction mixture was allowed to stir at room temperature over night. TLC showed completion of the reaction. The product had an Rf value of 0.3 (TLC developed in DCM). The reaction was cooled by ice-water bath. Polymer-supported trisamine (32 g) was added and stirred for 30 min. Trisamine bead was filtered and rinsed with 300-400 mL of DCM. The organic layer was washed with 200 mL of H3PO4 (1 M) solution twice, followed by saturated NaHCO3 solution (200 mL), and brine (200 mL). The organic phase was dried over K2CO3. After concentration, the crude product was purified by a 750 g silica gel cartridge (DCM to 5% MeOH in DCM) to afford the title compound as a beige oil (52 g, 75%).MS: 363 (M+Na+); TLC (DCM) Rf = 0.3.1 H NMR (CDCI3, 300MHz), δ (ppm): 7.80 (d, 9.0Hz, 2H), 7.35 (d, 7.8Hz, 2H), 5.04 (bs, 1 H), 3.45 (m, 4H), 2.46 (bs, 3H), 2.05 (m, 2H), 1 .43 (s, 9H). |
75% | With dmap; triethylamine; In dichloromethane; at 20℃;Cooling with ice; | Intermediate (i) (R)-3-(Toluene-4-sulfon loxy)-pyrrolidine-1 -carboxylic acid tert-butyl esterTo a 2L round-bottom flask equipped with a mechanical stirring rod and a 250 mL addition funnel was added p-tosyl chloride (58 g, 305 mmol, 1 .5 eq) and 600 mL of anhydrous DCM. The solution was cooled with ice-water bath. Et3N (65 ml) and DMAP (2.65g) were added. A solution of (3R)-(-)-N-Boc-hydroxy pyrrolidine (38 g, 203 mmol, 1 .0 eq) in 200 mL of DCM was added slowly. The reaction mixture was allowed to stir at room temperature over night. TLC showed completion of the reaction. The product had an Rf value of 0.3 in DCM. The reaction was cooled by ice-water bath. Polymer-supported trisamine (32 g) was added and stirred for 30 min. Trisamine bead was filtered and rinsed with 300-400 ml of DCM. The organic solution was washed with 200 mL of H3PO4 (1 M) solution twice, followed by saturated NaHCO3 solution (200 ml), and brine (200 ml). The organic phase was dried over K2CO3. After concentration, the crude product was purified by a 750 g silica gel cartridge (DCM to 5% MeOH in DCM) to afford 52 g (75% yield) of the title compound as a beige oil.MS: 363 (M+Na+); TLC (DCM) Rf = 0.3.1 H NMR (CDCIs, 300MHz), δ (ppm): 7.80 (d, 9.0Hz, 2H), 7.35 (d, 7.8Hz, 2H), 5.04 (bs, 1 H), 3.45 (m, 4H), 2.46 (bs, 3H), 2.05 (m, 2H), 1 .43 (s, 9H). |
75% | With dmap; triethylamine; In dichloromethane; at 20℃;Cooling with ice; | Intermediate (i)(R)-3-(Toluene-4-sulfon loxy)-pyrrolidine-1 -carboxylic acid tert-butyl esterTo a 2L round-bottom flask equipped with a mechanical stirring rod and a 250 mL addition funnel was added p-tosyl chloride (58 g, 305 mmol, 1 .5 eq) and 600 mL of anhydrous DCM. The solution was cooled with ice-water bath. Et3N (65 ml) and DMAP (2.65g) were added. A solution of (3R)-(-)-N-Boc-hydroxy pyrrolidine (38 g, 203 mmol, 1 .0 eq) in 200 mL of DCM was added slowly. The reaction mixture was allowed to stir at room temperature over night. TLC showed completion of the reaction. The product had an Rf value of 0.3 in DCM. The reaction was cooled by ice-water bath. Polymer-supported trisamine (32 g) was added and stirred for 30 min. Trisamine bead was filtered and rinsed with 300-400 ml of DCM. The organic solution was washed with 200 mL of H3PO (1 M) solution twice, followed by saturated NaHCO3 solution (200 ml), and brine (200 ml). The organic phase was dried over K2CO3. After concentration, the crude product was purified by a 750 g silica gel cartridge (DCM to 5% MeOH in DCM) to afford 52 g (75% yield) of the title compound as a beige oil.MS: 363 (M+Na+); TLC (DCM) Rf = 0.3.1 H NMR (CDCIs, 300MHz), δ (ppm): 7.80 (d, 9.0Hz, 2H), 7.35 (d, 7.8Hz, 2H), 5.04 (bs, 1 H), 3.45 (m, 4H), 2.46 (bs, 3H), 2.05 (m, 2H), 1 .43 (s, 9H). |
75% | With triethylamine;dmap; In dichloromethane; at 20℃;cooling with ice-water; | Intermediate (i)(R)-3-(Toluene-4-sulfon loxy)-pyrrolidine-1 -carboxylic acid tert-butyl esterTo a 2L round-bottom flask equipped with a mechanical stirring rod and a 250 mL addition funnel was added p-tosyl chloride (58 g, 305 mmol, 1 .5 eq) and 600 mL of anhydrous DCM. The solution was cooled with ice-water bath. Et3N (65 ml) and DMAP (2.65g) were added. A solution of (3R)-(-)-N-Boc-hydroxy pyrrolidine (38 g, 203 mmol, 1 .0 eq) in 200 mL of DCM was added slowly. The reaction mixture was allowed to stir at room temperature over night. TLC showed completion of the reaction. The product had an Rf value of 0.3 in DCM. The reaction was cooled by ice-water bath. Polymer-supported trisamine (32 g) was added and stirred for 30 min. Trisamine bead was filtered and rinsed with 300-400 ml of DCM. The organic solution was washed with 200 mL of H3PO4 (1 M) solution twice, followed by saturated NaHCO3 solution (200 ml), and brine (200 ml). The organic phase was dried over K2CO3. After concentration, the crude product was purified by a 750 g silica gel cartridge (DCM to 5% MeOH in DCM) to afford 52 g (75% yield) of the title compound as a beige oil.MS: 363 (M+Na+); TLC (DCM) Rf = 0.3.1 H NMR (CDCI3, 300MHz), δ (ppm): 7.80 (d, 9.0Hz, 2H), 7.35 (d, 7.8Hz, 2H), 5.04 (bs, 1 H), 3.45 (m, 4H), 2.46 (bs, 3H), 2.05 (m, 2H), 1 .43 (s, 9H). |
75% | With dmap; triethylamine; In dichloromethane; at 20℃;Cooling with ice; | Intermediate (i)(R)-3-(Toluene-4-sulfon loxy)-pyrrolidine-1 -carboxylic acid tert-butyl esterTo a 2L round-bottom flask equipped with a mechanical stirring rod and a 250 mL addition funnel was added p-tosyl chloride (58 g, 305 mmol, 1 .5 eq) and 600 mL of anhydrous DCM. The solution was cooled with ice-water bath. Et3N (65 ml) and DMAP (2.65g) were added. A solution of (3R)-(-)-N-Boc-hydroxy pyrrolidine (38 g, 203 mmol, 1 .0 eq) in 200 mL of DCM was added slowly. The reaction mixture was allowed to stir at room temperature over night. TLC showed completion of the reaction. The product had an Rf value of 0.3 in DCM. The reaction was cooled by ice-water bath. Polymer-supported trisamine (32 g) was added and stirred for 30 min. Trisamine bead was filtered and rinsed with 300-400 ml of DCM. The organic solution was washed with 200 mL of H3PO4 (1 M) solution twice, followed by saturated NaHCO3 solution (200 ml), and brine (200 ml). The organic phase was dried over K2CO3. After concentration, the crude product was purified by a 750 g silica gel cartridge (DCM to 5% MeOH in DCM) to afford 52 g (75% yield) of the title compound as a beige oil.MS: 363 (M+Na+); TLC (DCM) Rf = 0.3.1 H NMR (CDCI3, 300MHz), δ (ppm): 7.80 (d, 9.0Hz, 2H), 7.35 (d, 7.8Hz, 2H), 5.04 (bs, 1 H), 3.45 (m, 4H), 2.46 (bs, 3H), 2.05 (m, 2H), 1 .43 (s, 9H). |
74% | With pyridine; at 20℃; for 16h; | To a stirred solution of R-(-)-N-Boc-3-pyrrolidinol (5.03 g, 26.9 mmol) in pyridine (30.0 mL) was added p-TsCl (5.63 g, 30.0 mmol) at room temperature. After 16 h the reaction mixture was concentrated under reduced pressure and the resulting residue was partitioned between ethyl acetate (200.0 mL) and 1.0 N hydrochloric acid (200.0 mL) and separated. The organic layer was washed with water (2 * 100 mL), saturated sodium chloride (100 mL), dried (MgSO4), filtered, and concentrated under reduced pressure. Purification by flash column chromatography (silica gel, 80:20 to 50:50 heptane/ethyl acetate) to provide tert-butyl 3-(tosyloxy)pyrrolidine-1-carboxylate (6.79 g, 74%) as colorless oil. 1H NMR (500 MHz, CDCl3) δ 7.79 (d, J = 8.0 Hz, 2H), 7.36 (d, J = 8.0 Hz, 2H), 5.05 (br s, 1H), 3.48-3.38 (m, 4H), 2.46 (s, 3H), 2.17-1.91 (m, 1H), 1.91-1.71 (m, 1H), 1.46 (s, 9H). |
25% | With dmap; triethylamine; In dichloromethane; at 20℃; for 10h;Inert atmosphere; | A mixture of (R) -tert-butyl 3-hydroxypyrrolidine-1-carboxylate (1.0 g, 5.3 mmol) , p-methyl benzene sulfonic chloride (1.5 g, 8.0 mmol) , triethylamine (1.1 g, 11 mmol) and N, N-dimethylaminopyridine (65 mg, 0.53 mmol) in DCM (10 mL) was stirred at rt for 10 h and diluted with water (20 mL) . The resulting mixture was extracted with DCM (10 mL × 3) . The combined organic layers were dried over anhydrous Na2SO4 and concentrated. The residue was purified by silica gel chromatography eluted with Petroleum ether/EtOAc (v/v) 5/1 to give (R) -tert-butyl 3- (tosyloxy) pyrrolidine-1-carboxylate as colorless liquid (460 mg, 25) .1H NMR (400 MHz, CDCl3) : δ ppm 7.79 (d, J 8.0 Hz, 2H) , 7.35 (d, J 7.7 Hz, 2H) , 5.04 (s, 1H) , 3.38-3.50 (m, 4H) , 2.45 (s, 3H) , 1.97-2.15 (m, 2H) , 1.43 (m, 9H) and MS-ESI: m/z 286.20 [M-55] +. |
A336184 [166815-96-9]
tert-Butyl 4-((tosyloxy)methyl)piperidine-1-carboxylate
Similarity: 0.88
A214322 [141403-49-8]
(S)-2-((tert-Butoxycarbonyl)amino)-3-phenylpropyl 4-methylbenzenesulfonate
Similarity: 0.87
A274397 [122536-69-0]
(S)-Benzyl 3-((methylsulfonyl)oxy)pyrrolidine-1-carboxylate
Similarity: 0.72
A210335 [1965314-51-5]
(R)-Methyl 2-(pyrrolidin-3-yloxy)acetate 4-methylbenzenesulfonate
Similarity: 0.66
A336184 [166815-96-9]
tert-Butyl 4-((tosyloxy)methyl)piperidine-1-carboxylate
Similarity: 0.88
A214322 [141403-49-8]
(S)-2-((tert-Butoxycarbonyl)amino)-3-phenylpropyl 4-methylbenzenesulfonate
Similarity: 0.87
A274397 [122536-69-0]
(S)-Benzyl 3-((methylsulfonyl)oxy)pyrrolidine-1-carboxylate
Similarity: 0.72
A615373 [141699-57-2]
tert-Butyl 3-((methylsulfonyl)oxy)pyrrolidine-1-carboxylate
Similarity: 0.70
A336184 [166815-96-9]
tert-Butyl 4-((tosyloxy)methyl)piperidine-1-carboxylate
Similarity: 0.88
A214322 [141403-49-8]
(S)-2-((tert-Butoxycarbonyl)amino)-3-phenylpropyl 4-methylbenzenesulfonate
Similarity: 0.87
A274397 [122536-69-0]
(S)-Benzyl 3-((methylsulfonyl)oxy)pyrrolidine-1-carboxylate
Similarity: 0.72
A615373 [141699-57-2]
tert-Butyl 3-((methylsulfonyl)oxy)pyrrolidine-1-carboxylate
Similarity: 0.70
A274397 [122536-69-0]
(S)-Benzyl 3-((methylsulfonyl)oxy)pyrrolidine-1-carboxylate
Similarity: 0.72
A229347 [132945-75-6]
(S)-tert-Butyl 3-((methylsulfonyl)oxy)pyrrolidine-1-carboxylate
Similarity: 0.70
A615373 [141699-57-2]
tert-Butyl 3-((methylsulfonyl)oxy)pyrrolidine-1-carboxylate
Similarity: 0.70
A210335 [1965314-51-5]
(R)-Methyl 2-(pyrrolidin-3-yloxy)acetate 4-methylbenzenesulfonate
Similarity: 0.66
A206690 [1666113-04-7]
Pyrrolidine-2-carbonitrile 4-methylbenzenesulfonate
Similarity: 0.55