Home Cart Sign in  
Chemical Structure| 626-95-9 Chemical Structure| 626-95-9
Chemical Structure| 626-95-9

1,4-Pentanediol

CAS No.: 626-95-9

4.5 *For Research Use Only !

Cat. No.: A713889 Purity: 98%

Change View

Size Price

USA Stock *0-1 Day

Global Stock *5-7 Days

In Stock
1g łÇď¶ÊÊ Inquiry Inquiry
5g ł§ò¶ÊÊ Inquiry Inquiry
25g łÇÊî¶ÊÊ Inquiry Inquiry
100g ł§Êď¶ÊÊ Inquiry Inquiry
500g łÇ§Ëî¶ÊÊ Inquiry Inquiry

  • 1g

    łÇď¶ÊÊ

  • 5g

    ł§ò¶ÊÊ

  • 25g

    łÇÊî¶ÊÊ

  • 100g

    ł§Êď¶ÊÊ

  • 500g

    łÇ§Ëî¶ÊÊ

In Stock

- +

  • 1-2 Day Shipping
  • High Quality
  • Technical Support Online Technical Q&A
Product Citations

Product Citations

Mousa, Maryam ; Jonsson, Magnus ; Wilson, Olivia , et al.

Abstract: Herein, we report a new synthetic route to the cyclic ketene acetal, 2-methylene-4-methyl-1,3-dioxepane (Me-MDO) as a way to expand the tool box of synthesis procedures for cyclic ketene acetals and actualize them as realistic alternatives for synthesizing biodegradable polymers. In this work, 2-methylene-1,3-dioxepane (MDO) and Me-MDO were polymerized by radical ring-opening polymerization to synthesize degradable polyesters. NMR and SEC were used to monitor the polymerization while DSC was used to study the thermal properties. Poly(2-methylene-1,3-dioxepane) (PMDO) showed increased degree of branching with higher conversion, subsequently decreasing crystallinity. The effect of branching and the introduction of side-groups on the chem. hydrolysis rate and biodegradability of the polyesters was assessed using a chem. hydrolysis test and the OECD 301D ready biodegradability screening test, resp. A significant reduction in the chem. hydrolysis rate and biodegradability was observed upon the introduction of a side group in the poly(2-methylene-4-methyl-1,3-dioxepane) (PMe-MDO) polyester. Less obvious effects on the hydrolysis rate and biodegradability were observed as a result of the polyester branching.

Purchased from AmBeed: ;

Alternative Products

Product Details of [ 626-95-9 ]

CAS No. :626-95-9
Formula : C5H12O2
M.W : 104.15
SMILES Code : CC(O)CCCO
MDL No. :MFCD00004560
Boiling Point : No data available
InChI Key :GLOBUAZSRIOKLN-UHFFFAOYSA-N
Pubchem ID :79083

Safety of [ 626-95-9 ]

GHS Pictogram:
Signal Word:Warning
Hazard Statements:H315-H319-H335
Precautionary Statements:P261-P305+P351+P338

Calculated chemistry of [ 626-95-9 ] Show Less

Physicochemical Properties

Num. heavy atoms 7
Num. arom. heavy atoms 0
Fraction Csp3 1.0
Num. rotatable bonds 3
Num. H-bond acceptors 2.0
Num. H-bond donors 2.0
Molar Refractivity 28.47
TPSA ?

Topological Polar Surface Area: Calculated from
Ertl P. et al. 2000 J. Med. Chem.

40.46 Ų

Lipophilicity

Log Po/w (iLOGP)?

iLOGP: in-house physics-based method implemented from
Daina A et al. 2014 J. Chem. Inf. Model.

1.46
Log Po/w (XLOGP3)?

XLOGP3: Atomistic and knowledge-based method calculated by
XLOGP program, version 3.2.2, courtesy of CCBG, Shanghai Institute of Organic Chemistry

0.0
Log Po/w (WLOGP)?

WLOGP: Atomistic method implemented from
Wildman SA and Crippen GM. 1999 J. Chem. Inf. Model.

0.14
Log Po/w (MLOGP)?

MLOGP: Topological method implemented from
Moriguchi I. et al. 1992 Chem. Pharm. Bull.
Moriguchi I. et al. 1994 Chem. Pharm. Bull.
Lipinski PA. et al. 2001 Adv. Drug. Deliv. Rev.

0.23
Log Po/w (SILICOS-IT)?

SILICOS-IT: Hybrid fragmental/topological method calculated by
FILTER-IT program, version 1.0.2, courtesy of SILICOS-IT, http://www.silicos-it.com

0.2
Consensus Log Po/w?

Consensus Log Po/w: Average of all five predictions

0.41

Water Solubility

Log S (ESOL):?

ESOL: Topological method implemented from
Delaney JS. 2004 J. Chem. Inf. Model.

-0.29
Solubility 53.7 mg/ml ; 0.516 mol/l
Class?

Solubility class: Log S scale
Insoluble < -10 < Poorly < -6 < Moderately < -4 < Soluble < -2 Very < 0 < Highly

Very soluble
Log S (Ali)?

Ali: Topological method implemented from
Ali J. et al. 2012 J. Chem. Inf. Model.

-0.4
Solubility 41.4 mg/ml ; 0.397 mol/l
Class?

Solubility class: Log S scale
Insoluble < -10 < Poorly < -6 < Moderately < -4 < Soluble < -2 Very < 0 < Highly

Very soluble
Log S (SILICOS-IT)?

SILICOS-IT: Fragmental method calculated by
FILTER-IT program, version 1.0.2, courtesy of SILICOS-IT, http://www.silicos-it.com

-0.31
Solubility 51.2 mg/ml ; 0.492 mol/l
Class?

Solubility class: Log S scale
Insoluble < -10 < Poorly < -6 < Moderately < -4 < Soluble < -2 Very < 0 < Highly

Soluble

Pharmacokinetics

GI absorption?

Gatrointestinal absorption: according to the white of the BOILED-Egg

High
BBB permeant?

BBB permeation: according to the yolk of the BOILED-Egg

No
P-gp substrate?

P-glycoprotein substrate: SVM model built on 1033 molecules (training set)
and tested on 415 molecules (test set)
10-fold CV: ACC=0.72 / AUC=0.77
External: ACC=0.88 / AUC=0.94

No
CYP1A2 inhibitor?

Cytochrome P450 1A2 inhibitor: SVM model built on 9145 molecules (training set)
and tested on 3000 molecules (test set)
10-fold CV: ACC=0.83 / AUC=0.90
External: ACC=0.84 / AUC=0.91

No
CYP2C19 inhibitor?

Cytochrome P450 2C19 inhibitor: SVM model built on 9272 molecules (training set)
and tested on 3000 molecules (test set)
10-fold CV: ACC=0.80 / AUC=0.86
External: ACC=0.80 / AUC=0.87

No
CYP2C9 inhibitor?

Cytochrome P450 2C9 inhibitor: SVM model built on 5940 molecules (training set)
and tested on 2075 molecules (test set)
10-fold CV: ACC=0.78 / AUC=0.85
External: ACC=0.71 / AUC=0.81

No
CYP2D6 inhibitor?

Cytochrome P450 2D6 inhibitor: SVM model built on 3664 molecules (training set)
and tested on 1068 molecules (test set)
10-fold CV: ACC=0.79 / AUC=0.85
External: ACC=0.81 / AUC=0.87

No
CYP3A4 inhibitor?

Cytochrome P450 3A4 inhibitor: SVM model built on 7518 molecules (training set)
and tested on 2579 molecules (test set)
10-fold CV: ACC=0.77 / AUC=0.85
External: ACC=0.78 / AUC=0.86

No
Log Kp (skin permeation)?

Skin permeation: QSPR model implemented from
Potts RO and Guy RH. 1992 Pharm. Res.

-6.94 cm/s

Druglikeness

Lipinski?

Lipinski (Pfizer) filter: implemented from
Lipinski CA. et al. 2001 Adv. Drug Deliv. Rev.
MW ≤ 500
MLOGP ≤ 4.15
N or O ≤ 10
NH or OH ≤ 5

0.0
Ghose?

Ghose filter: implemented from
Ghose AK. et al. 1999 J. Comb. Chem.
160 ≤ MW ≤ 480
-0.4 ≤ WLOGP ≤ 5.6
40 ≤ MR ≤ 130
20 ≤ atoms ≤ 70

None
Veber?

Veber (GSK) filter: implemented from
Veber DF. et al. 2002 J. Med. Chem.
Rotatable bonds ≤ 10
TPSA ≤ 140

0.0
Egan?

Egan (Pharmacia) filter: implemented from
Egan WJ. et al. 2000 J. Med. Chem.
WLOGP ≤ 5.88
TPSA ≤ 131.6

0.0
Muegge?

Muegge (Bayer) filter: implemented from
Muegge I. et al. 2001 J. Med. Chem.
200 ≤ MW ≤ 600
-2 ≤ XLOGP ≤ 5
TPSA ≤ 150
Num. rings ≤ 7
Num. carbon > 4
Num. heteroatoms > 1
Num. rotatable bonds ≤ 15
H-bond acc. ≤ 10
H-bond don. ≤ 5

1.0
Bioavailability Score?

Abbott Bioavailability Score: Probability of F > 10% in rat
implemented from
Martin YC. 2005 J. Med. Chem.

0.55

Medicinal Chemistry

PAINS?

Pan Assay Interference Structures: implemented from
Baell JB. & Holloway GA. 2010 J. Med. Chem.

0.0 alert
Brenk?

Structural Alert: implemented from
Brenk R. et al. 2008 ChemMedChem

0.0 alert: heavy_metal
Leadlikeness?

Leadlikeness: implemented from
Teague SJ. 1999 Angew. Chem. Int. Ed.
250 ≤ MW ≤ 350
XLOGP ≤ 3.5
Num. rotatable bonds ≤ 7

No; 1 violation:MW<1.0
Synthetic accessibility?

Synthetic accessibility score: from 1 (very easy) to 10 (very difficult)
based on 1024 fragmental contributions (FP2) modulated by size and complexity penaties,
trained on 12'782'590 molecules and tested on 40 external molecules (r2 = 0.94)

1.6
 

Historical Records

Technical Information

Categories