Home Cart 0 Sign in  
X

[ CAS No. 7567-63-7 ] {[proInfo.proName]}

,{[proInfo.pro_purity]}
Cat. No.: {[proInfo.prAm]}
3d Animation Molecule Structure of 7567-63-7
Chemical Structure| 7567-63-7
Chemical Structure| 7567-63-7
Structure of 7567-63-7 * Storage: {[proInfo.prStorage]}
Cart0 Add to My Favorites Add to My Favorites Bulk Inquiry Inquiry Add To Cart

Quality Control of [ 7567-63-7 ]

Related Doc. of [ 7567-63-7 ]

Alternatived Products of [ 7567-63-7 ]

Product Details of [ 7567-63-7 ]

CAS No. :7567-63-7 MDL No. :MFCD00068621
Formula : C12H6 Boiling Point : -
Linear Structure Formula :- InChI Key :ZDRMMTYSQSIGRY-UHFFFAOYSA-N
M.W : 150.18 Pubchem ID :139048
Synonyms :

Calculated chemistry of [ 7567-63-7 ]

Physicochemical Properties

Num. heavy atoms : 12
Num. arom. heavy atoms : 6
Fraction Csp3 : 0.0
Num. rotatable bonds : 0
Num. H-bond acceptors : 0.0
Num. H-bond donors : 0.0
Molar Refractivity : 50.25
TPSA : 0.0 Ų

Pharmacokinetics

GI absorption : Low
BBB permeant : No
P-gp substrate : No
CYP1A2 inhibitor : No
CYP2C19 inhibitor : No
CYP2C9 inhibitor : No
CYP2D6 inhibitor : No
CYP3A4 inhibitor : No
Log Kp (skin permeation) : -5.33 cm/s

Lipophilicity

Log Po/w (iLOGP) : 2.86
Log Po/w (XLOGP3) : 2.66
Log Po/w (WLOGP) : 1.87
Log Po/w (MLOGP) : 4.79
Log Po/w (SILICOS-IT) : 3.79
Consensus Log Po/w : 3.19

Druglikeness

Lipinski : 1.0
Ghose : None
Veber : 0.0
Egan : 0.0
Muegge : 2.0
Bioavailability Score : 0.55

Water Solubility

Log S (ESOL) : -2.82
Solubility : 0.229 mg/ml ; 0.00152 mol/l
Class : Soluble
Log S (Ali) : -2.31
Solubility : 0.733 mg/ml ; 0.00488 mol/l
Class : Soluble
Log S (SILICOS-IT) : -2.63
Solubility : 0.354 mg/ml ; 0.00236 mol/l
Class : Soluble

Medicinal Chemistry

PAINS : 0.0 alert
Brenk : 1.0 alert
Leadlikeness : 1.0
Synthetic accessibility : 1.94

Safety of [ 7567-63-7 ]

Signal Word:Warning Class:N/A
Precautionary Statements:P305+P351+P338 UN#:N/A
Hazard Statements:H319 Packing Group:N/A
GHS Pictogram:

Application In Synthesis of [ 7567-63-7 ]

* All experimental methods are cited from the reference, please refer to the original source for details. We do not guarantee the accuracy of the content in the reference.

  • Upstream synthesis route of [ 7567-63-7 ]
  • Downstream synthetic route of [ 7567-63-7 ]

[ 7567-63-7 ] Synthesis Path-Upstream   1~12

  • 1
  • [ 18772-58-2 ]
  • [ 7567-63-7 ]
YieldReaction ConditionsOperation in experiment
87%
Stage #1: With caesium carbonate In methanol for 16 h;
Stage #2: With ammonium chloride In dichloromethane; water
(9)
1,3,5-trisethynyl-benzene.
To a flame-dried flask under argon was added (8) (2.39 mmol, 1 eq), cesium carbonate (4.78 mmol, 2 eq), and methanol (10 mL).
The reaction was stirred 16 hours.
The solution went from opaque to translucent upon completion.
The methanol was removed in vacuo and the solid was partitioned between water and methylene chloride.
The water layer was extracted with methylene chloride (3*20 mL).
The organic layer was washed with aqueous ammonium chloride (1.0 M, 2*20 mL), water (2*20 mL), and brine (2*20 mL).
The organic layer was dried with sodium sulfate, filtered, and removed in vacuo.
Product obtained as off-white soft crystals (2.09 mmol) in 87percent yield and had a melting point of 101-103° C. 1H NMR (400 MHz, CDCl3) δ 7.57 (s, 3H), 3.12 (s, 3H).
13C NMR (100 MHz, CDCl3) δ 135.6, 122.8, 81.6, 78.7. MS (CI+) m/z 151 [M]+.
85% With methanol; potassium carbonate In chloroform at 20℃; for 24 h; A (1 g, 2.73 mmol) and K2CO3 (1.24 g, 8.99 mmol) were dissolved in 100 mL CHCl3/MeOH 3:2 and stirred at rt for 24 h. The solvent was removed on a rotary evaporator and the off-white solid was purified by silica gel column chromatography using dichloromethane/hexane 1:4 to give the product. Isolated yield: 350 mg. 1H NMR (CDCl3, 400 MHz): (ppm) 7.57 (s, 3H, H1), 3.11 (s, 3H, H2). 13C{1H} NMR (CDCl3, 100 MHz): (ppm) 136.12, 132.48, 123.38, 123.01, 83.51, 82.10, 70.59, 79.19.
Reference: [1] Journal of Materials Chemistry, 2008, vol. 18, # 9, p. 1037 - 1045
[2] Tetrahedron Asymmetry, 2007, vol. 18, # 23, p. 2820 - 2827
[3] Angewandte Chemie - International Edition, 2012, vol. 51, # 21, p. 5106 - 5109
[4] Angewandte Chemie - International Edition, 2016, vol. 55, # 24, p. 6858 - 6863[5] Angew. Chem., 2016, vol. 24, p. 6972 - 6977,6
[6] Chemical Communications, 2015, vol. 52, # 2, p. 316 - 318
[7] Macromolecules, 2003, vol. 36, # 22, p. 8225 - 8230
[8] Chemical Communications, 2008, # 48, p. 6567 - 6569
[9] Organic Letters, 2009, vol. 11, # 13, p. 2748 - 2751
[10] Chemical Communications, 2014, vol. 50, # 91, p. 14175 - 14178
[11] Journal of Organic Chemistry, 1998, vol. 63, # 16, p. 5568 - 5580
[12] Angewandte Chemie - International Edition, 2005, vol. 44, # 35, p. 5679 - 5682
[13] Patent: US2006/24834, 2006, A1, . Location in patent: Page/Page column 6; Sheet 7
[14] Journal of Materials Chemistry C, 2017, vol. 5, # 21, p. 5135 - 5142
[15] Journal of the American Chemical Society, 2004, vol. 126, # 13, p. 4094 - 4095
[16] Beilstein Journal of Organic Chemistry, 2018, vol. 14, p. 2242 - 2249
[17] Chemical Communications (Cambridge, United Kingdom), 2012, vol. 48, # 88, p. 10877 - 10879,3
[18] Chemical Communications, 2012, vol. 48, # 88, p. 10877 - 10879
[19] Angewandte Chemie - International Edition, 2011, vol. 50, # 25, p. 5737 - 5740
[20] European Journal of Inorganic Chemistry, 2018, vol. 2018, # 22, p. 2533 - 2540
[21] Journal of the Chemical Society, Perkin Transactions 2: Physical Organic Chemistry (1972-1999), 1988, p. 1251 - 1258
[22] Angewandte Chemie - International Edition, 1998, vol. 37, # 12, p. 1714 - 1717
[23] Journal of the American Chemical Society, 2003, vol. 125, # 6, p. 1669 - 1680
[24] Chemistry - A European Journal, 2003, vol. 9, # 11, p. 2542 - 2550
[25] Tetrahedron Letters, 2009, vol. 50, # 13, p. 1427 - 1430
[26] Journal of the American Chemical Society, 2009, vol. 131, # 25, p. 8784 - 8786
[27] Chemical Communications, 2010, vol. 46, # 25, p. 4547 - 4549
[28] Inorganic Chemistry, 2010, vol. 49, # 23, p. 11174 - 11183
[29] Chemistry - A European Journal, 2010, vol. 16, # 40, p. 12108 - 12113
[30] Chemistry - A European Journal, 2011, vol. 17, # 11, p. 3262 - 3273
[31] Journal of the American Chemical Society, 2012, vol. 134, # 1, p. 734 - 742
[32] Supramolecular Chemistry, 2011, vol. 23, # 7, p. 501 - 508
[33] Macromolecules, 2013, vol. 46, # 12, p. 4754 - 4763
[34] ChemSusChem, 2014, vol. 7, # 8, p. 2110 - 2114
[35] Journal of Materials Chemistry C, 2015, vol. 3, # 44, p. 11735 - 11746
[36] Polyhedron, 2017, vol. 128, p. 112 - 120
[37] RSC Advances, 2017, vol. 7, # 75, p. 47681 - 47688
[38] Organic Letters, 2018, vol. 20, # 3, p. 542 - 545
[39] Chemical Communications, 2018, vol. 54, # 67, p. 9274 - 9277
  • 2
  • [ 105405-52-5 ]
  • [ 7567-63-7 ]
YieldReaction ConditionsOperation in experiment
92% With potassium hydroxide In toluene at 110℃; for 8 h; General procedure: The procedure was modified following the Sonogashira coupling protocol. 1,3,5-Tribromobenzene (31.5 g, 100 mmol) was dissolved in dry triethylamine (250 mL) under an atmosphere of nitrogen. Copper(I) iodide (191 mg, 1.0 mmol), dichlorobis(dibenzonitrile)palladium(II) (192 mg, 0.5 mmol) were added to the stirred solution.
After addition of 2-methyl-3-butyn-2-ol (12.6 g, 150 mmol) in drops, the reaction mixture was refluxed for 12 h under nitrogen atmosphere.
At the room temperature, the formed precipitate of triethylamine hydroiodide was filtered off and washed with diethyl ether (3 * 50 mL).
The combined filtrates were dried over anhydrous Na2SO4 and evaporated to have the crude product.
Re-crystallization of this crude product in 20 mL of ethanol at -20 °C delivered white crystals of 2,2',2"-(benzene-1,3,5-triyltris(ethyne-2,1-diyl))tris(propan-2-ol) (3) (30.8 g, 95percent).
The hydrolysis of compound 3 was carried out by treatment with KOH (19.2 g) and toluene 150 mL under stirring at 110 °C for 8 h.
A standard work-up procedure involving evaporation of the organic solvent, extraction of the residue with diethyl ether, drying over Na2SO4, and removal of the solvent under reduced pressure yielded 1,3,5-triethynylbenzene 4) (13.0 g, 92percent) as colorless needle crystals. m.p. 95.4–96.0 °C; 1H NMR (300 MHz, CDCl3, ppm) δ 3.10 (s, 3H), 7.57 (s, 3H).
52% With potassium hydroxide In toluene for 5 h; Reflux 2.2.2 1,3,5-Triethynylbenzene 2 [15]A solution of 3 (6.54 g, 19.62 mmol) in toluene (100 mL) was heated up to boiling.Powdered potassium hydroxide (3.30 g, 58.86 mmol) was added and the mixture refluxed for 5 h. After cooling down to room temperature, diethyl ether (50 mL) was added. The organic phase was washed with water (2 * 100 mL), dried (Na2SO4), and evaporated to give a dark brown solid which was purified by sublimation at 80 °C under vacuum yielding colorless needles of 2 (1.56 g, 52percent). Mp = 104 °C. 1H NMR (500.13 MHz, CDCl3): δH = 7.57 (s, Ar-H), 3.15 (s, C≡C-H).13C NMR (125.76 MHz, CDCl3): δC = 135.6, 122.9 (Ar-C), 81.6 (Ar-C≡C), 78.7 (Ar-C≡C).
Reference: [1] Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2013, vol. 107, p. 377 - 385
[2] Journal of Chemical Research - Part S, 2002, # 11, p. 552 - 555
[3] Beilstein Journal of Organic Chemistry, 2011, vol. 7, p. 426 - 431
[4] Chemistry - A European Journal, 2017, vol. 23, # 7, p. 1623 - 1633
[5] Synthetic Communications, 1996, vol. 26, # 12, p. 2309 - 2316
[6] Journal of Materials Chemistry, 2012, vol. 22, # 7, p. 3075 - 3081
[7] Journal of Molecular Structure, 2013, vol. 1043, p. 103 - 108
[8] Journal of the Chemical Society, Perkin Transactions 1: Organic and Bio-Organic Chemistry (1972-1999), 1995, # 18, p. 2275 - 2280
[9] Journal of Materials Chemistry, 2010, vol. 20, # 9, p. 1806 - 1810
[10] Chinese Journal of Chemistry, 2012, vol. 30, # 12, p. 2861 - 2868
[11] Chemical Communications, 2016, vol. 52, # 87, p. 12881 - 12884
  • 3
  • [ 626-39-1 ]
  • [ 7567-63-7 ]
Reference: [1] Tetrahedron, 2007, vol. 63, # 30, p. 7120 - 7132
[2] Angewandte Chemie - International Edition, 2005, vol. 44, # 35, p. 5679 - 5682
[3] Macromolecules, 2003, vol. 36, # 22, p. 8225 - 8230
[4] Journal of the American Chemical Society, 2004, vol. 126, # 13, p. 4094 - 4095
[5] Angewandte Chemie - International Edition, 1998, vol. 37, # 12, p. 1714 - 1717
[6] Synthetic Communications, 1996, vol. 26, # 12, p. 2309 - 2316
[7] Journal of the Chemical Society, Perkin Transactions 1: Organic and Bio-Organic Chemistry (1972-1999), 1995, # 18, p. 2275 - 2280
[8] Journal of the Chemical Society, Perkin Transactions 2: Physical Organic Chemistry (1972-1999), 1988, p. 1251 - 1258
[9] Chemistry - A European Journal, 2011, vol. 17, # 11, p. 3262 - 3273
[10] Beilstein Journal of Organic Chemistry, 2011, vol. 7, p. 426 - 431
[11] Journal of the American Chemical Society, 2012, vol. 134, # 1, p. 734 - 742
[12] Journal of Materials Chemistry, 2012, vol. 22, # 7, p. 3075 - 3081
[13] Supramolecular Chemistry, 2011, vol. 23, # 7, p. 501 - 508
[14] Chemical Communications, 2012, vol. 48, # 88, p. 10877 - 10879
[15] Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2013, vol. 107, p. 377 - 385
[16] Macromolecules, 2013, vol. 46, # 12, p. 4754 - 4763
[17] Chinese Journal of Chemistry, 2012, vol. 30, # 12, p. 2861 - 2868
[18] Chemical Communications, 2014, vol. 50, # 91, p. 14175 - 14178
[19] Chemical Communications, 2016, vol. 52, # 87, p. 12881 - 12884
[20] RSC Advances, 2017, vol. 7, # 75, p. 47681 - 47688
[21] Journal of Materials Chemistry C, 2017, vol. 5, # 21, p. 5135 - 5142
[22] Organic Letters, 2018, vol. 20, # 3, p. 542 - 545
[23] European Journal of Inorganic Chemistry, 2018, vol. 2018, # 22, p. 2533 - 2540
[24] Chemical Communications, 2018, vol. 54, # 67, p. 9274 - 9277
[25] Beilstein Journal of Organic Chemistry, 2018, vol. 14, p. 2242 - 2249
  • 4
  • [ 626-39-1 ]
  • [ 1066-54-2 ]
  • [ 7567-63-7 ]
Reference: [1] Chemistry - A European Journal, 2009, vol. 15, # 44, p. 11985 - 11998
[2] Chemical Communications, 2016, vol. 52, # 81, p. 12032 - 12035
[3] Tetrahedron Letters, 2001, vol. 42, # 14, p. 2697 - 2699
  • 5
  • [ 626-44-8 ]
  • [ 7567-63-7 ]
Reference: [1] Journal of Organic Chemistry, 1998, vol. 63, # 16, p. 5568 - 5580
  • 6
  • [ 313691-72-4 ]
  • [ 7567-63-7 ]
Reference: [1] Tetrahedron, 2007, vol. 63, # 30, p. 7120 - 7132
  • 7
  • [ 191846-86-3 ]
  • [ 7567-63-7 ]
Reference: [1] Beilstein Journal of Organic Chemistry, 2011, vol. 7, p. 426 - 431
  • 8
  • [ 599187-51-6 ]
  • [ 7567-63-7 ]
  • [ 599187-53-8 ]
Reference: [1] Tetrahedron, 2007, vol. 63, # 30, p. 7120 - 7132
  • 9
  • [ 41009-73-8 ]
  • [ 7567-63-7 ]
Reference: [1] Chemische Berichte, 1973, vol. 106, p. 511 - 524
  • 10
  • [ 18823-04-6 ]
  • [ 7567-63-7 ]
Reference: [1] Chemische Berichte, 1963, vol. 96, p. 930 - 943
  • 11
  • [ 626-39-1 ]
  • [ 74-86-2 ]
  • [ 7567-63-7 ]
Reference: [1] Chemistry Letters, 1998, # 11, p. 1081 - 1082
  • 12
  • [ 91492-90-9 ]
  • [ 7567-63-7 ]
Reference: [1] Angewandte Chemie, 1962, vol. 74, p. 781
Same Skeleton Products
Historical Records

Related Functional Groups of
[ 7567-63-7 ]

Aryls

Chemical Structure| 29079-00-3

[ 29079-00-3 ]

4-Ethynyl-1,1'-biphenyl

Similarity: 0.88

Chemical Structure| 501-65-5

[ 501-65-5 ]

Diphenylacetylene

Similarity: 0.88

Chemical Structure| 673-32-5

[ 673-32-5 ]

Prop-1-yn-1-ylbenzene

Similarity: 0.88

Chemical Structure| 2949-26-0

[ 2949-26-0 ]

2-Ethynyl-naphthalene

Similarity: 0.84

Chemical Structure| 23152-99-0

[ 23152-99-0 ]

1-Ethynyl-4-isopropylbenzene

Similarity: 0.81

Alkynes

Chemical Structure| 29079-00-3

[ 29079-00-3 ]

4-Ethynyl-1,1'-biphenyl

Similarity: 0.88

Chemical Structure| 501-65-5

[ 501-65-5 ]

Diphenylacetylene

Similarity: 0.88

Chemical Structure| 673-32-5

[ 673-32-5 ]

Prop-1-yn-1-ylbenzene

Similarity: 0.88

Chemical Structure| 2949-26-0

[ 2949-26-0 ]

2-Ethynyl-naphthalene

Similarity: 0.84

Chemical Structure| 23152-99-0

[ 23152-99-0 ]

1-Ethynyl-4-isopropylbenzene

Similarity: 0.81